Szorzattá alakítás
-\left(x-9\right)\left(x+5\right)
Kiértékelés
-\left(x-9\right)\left(x+5\right)
Grafikon
Megosztás
Átmásolva a vágólapra
-x^{2}+4x+45
Átrendezzük a polinomot, kanonikus formára hozva azt. A tagokat sorba rendezzük a legnagyobb kitevőjűtől a legkisebb kitevőjűig.
a+b=4 ab=-45=-45
Csoportosítással tényezőkre bontjuk a kifejezést úgy, hogy először átírjuk -x^{2}+ax+bx+45 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
-1,45 -3,15 -5,9
Mivel a ab negatív, a és b rendelkezik a megfelelő előjel között. Mivel a a+b pozitív, a pozitív szám nagyobb abszolút értéket tartalmaz, mint a negatív érték. Listát készítünk minden olyan egész párról, amelynek szorzata -45.
-1+45=44 -3+15=12 -5+9=4
Kiszámítjuk az egyes párok összegét.
a=9 b=-5
A megoldás az a pár, amelynek összege 4.
\left(-x^{2}+9x\right)+\left(-5x+45\right)
Átírjuk az értéket (-x^{2}+4x+45) \left(-x^{2}+9x\right)+\left(-5x+45\right) alakban.
-x\left(x-9\right)-5\left(x-9\right)
A -x a második csoportban lévő első és -5 faktort.
\left(x-9\right)\left(-x-5\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-9 általános kifejezést a zárójelből.
-x^{2}+4x+45=0
A másodfokú polinomiális kifejezés ezzel a transzformációval faktorálható: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). A másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása x_{1} és x_{2}.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 45}}{2\left(-1\right)}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 45}}{2\left(-1\right)}
Négyzetre emeljük a következőt: 4.
x=\frac{-4±\sqrt{16+4\times 45}}{2\left(-1\right)}
Összeszorozzuk a következőket: -4 és -1.
x=\frac{-4±\sqrt{16+180}}{2\left(-1\right)}
Összeszorozzuk a következőket: 4 és 45.
x=\frac{-4±\sqrt{196}}{2\left(-1\right)}
Összeadjuk a következőket: 16 és 180.
x=\frac{-4±14}{2\left(-1\right)}
Négyzetgyököt vonunk a következőből: 196.
x=\frac{-4±14}{-2}
Összeszorozzuk a következőket: 2 és -1.
x=\frac{10}{-2}
Megoldjuk az egyenletet (x=\frac{-4±14}{-2}). ± előjele pozitív. Összeadjuk a következőket: -4 és 14.
x=-5
10 elosztása a következővel: -2.
x=-\frac{18}{-2}
Megoldjuk az egyenletet (x=\frac{-4±14}{-2}). ± előjele negatív. 14 kivonása a következőből: -4.
x=9
-18 elosztása a következővel: -2.
-x^{2}+4x+45=-\left(x-\left(-5\right)\right)\left(x-9\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) -5 értéket x_{1} helyére, a(z) 9 értéket pedig x_{2} helyére.
-x^{2}+4x+45=-\left(x+5\right)\left(x-9\right)
A(z) p-\left(-q\right) alakú kifejezések egyszerűsítése p+q alakúvá.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}