Megoldás a(z) x változóra
x=-\frac{5y}{4}+\frac{2}{15}
Megoldás a(z) y változóra
y=-\frac{4x}{5}+\frac{8}{75}
Grafikon
Megosztás
Átmásolva a vágólapra
4x=\frac{8}{15}-5y
Mindkét oldalból kivonjuk a következőt: 5y.
\frac{4x}{4}=\frac{\frac{8}{15}-5y}{4}
Mindkét oldalt elosztjuk ennyivel: 4.
x=\frac{\frac{8}{15}-5y}{4}
A(z) 4 értékkel való osztás eltünteti a(z) 4 értékkel való szorzást.
x=-\frac{5y}{4}+\frac{2}{15}
\frac{8}{15}-5y elosztása a következővel: 4.
5y=\frac{8}{15}-4x
Mindkét oldalból kivonjuk a következőt: 4x.
\frac{5y}{5}=\frac{\frac{8}{15}-4x}{5}
Mindkét oldalt elosztjuk ennyivel: 5.
y=\frac{\frac{8}{15}-4x}{5}
A(z) 5 értékkel való osztás eltünteti a(z) 5 értékkel való szorzást.
y=-\frac{4x}{5}+\frac{8}{75}
\frac{8}{15}-4x elosztása a következővel: 5.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}