Szorzattá alakítás
4\left(x-25\right)\left(x-21\right)
Kiértékelés
4\left(x-25\right)\left(x-21\right)
Grafikon
Megosztás
Átmásolva a vágólapra
4\left(x^{2}-46x+525\right)
Kiemeljük a következőt: 4.
a+b=-46 ab=1\times 525=525
Vegyük a következőt: x^{2}-46x+525. Csoportosítással tényezőkre bontjuk a kifejezést úgy, hogy először átírjuk x^{2}+ax+bx+525 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
-1,-525 -3,-175 -5,-105 -7,-75 -15,-35 -21,-25
Mivel ab pozitív, a és b azonos aláírására. Mivel a a+b negatív, a és b negatív. Listát készítünk minden olyan egész párról, amelynek szorzata 525.
-1-525=-526 -3-175=-178 -5-105=-110 -7-75=-82 -15-35=-50 -21-25=-46
Kiszámítjuk az egyes párok összegét.
a=-25 b=-21
A megoldás az a pár, amelynek összege -46.
\left(x^{2}-25x\right)+\left(-21x+525\right)
Átírjuk az értéket (x^{2}-46x+525) \left(x^{2}-25x\right)+\left(-21x+525\right) alakban.
x\left(x-25\right)-21\left(x-25\right)
A x a második csoportban lévő első és -21 faktort.
\left(x-25\right)\left(x-21\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-25 általános kifejezést a zárójelből.
4\left(x-25\right)\left(x-21\right)
Írja át a teljes tényezőkre bontott kifejezést.
4x^{2}-184x+2100=0
A másodfokú polinomiális kifejezés ezzel a transzformációval faktorálható: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). A másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása x_{1} és x_{2}.
x=\frac{-\left(-184\right)±\sqrt{\left(-184\right)^{2}-4\times 4\times 2100}}{2\times 4}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-\left(-184\right)±\sqrt{33856-4\times 4\times 2100}}{2\times 4}
Négyzetre emeljük a következőt: -184.
x=\frac{-\left(-184\right)±\sqrt{33856-16\times 2100}}{2\times 4}
Összeszorozzuk a következőket: -4 és 4.
x=\frac{-\left(-184\right)±\sqrt{33856-33600}}{2\times 4}
Összeszorozzuk a következőket: -16 és 2100.
x=\frac{-\left(-184\right)±\sqrt{256}}{2\times 4}
Összeadjuk a következőket: 33856 és -33600.
x=\frac{-\left(-184\right)±16}{2\times 4}
Négyzetgyököt vonunk a következőből: 256.
x=\frac{184±16}{2\times 4}
-184 ellentettje 184.
x=\frac{184±16}{8}
Összeszorozzuk a következőket: 2 és 4.
x=\frac{200}{8}
Megoldjuk az egyenletet (x=\frac{184±16}{8}). ± előjele pozitív. Összeadjuk a következőket: 184 és 16.
x=25
200 elosztása a következővel: 8.
x=\frac{168}{8}
Megoldjuk az egyenletet (x=\frac{184±16}{8}). ± előjele negatív. 16 kivonása a következőből: 184.
x=21
168 elosztása a következővel: 8.
4x^{2}-184x+2100=4\left(x-25\right)\left(x-21\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) 25 értéket x_{1} helyére, a(z) 21 értéket pedig x_{2} helyére.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}