3 m + 40 c m = x d m
Megoldás a(z) c változóra (complex solution)
\left\{\begin{matrix}\\c=\frac{dx-3}{40}\text{, }&\text{unconditionally}\\c\in \mathrm{C}\text{, }&m=0\end{matrix}\right,
Megoldás a(z) d változóra (complex solution)
\left\{\begin{matrix}d=\frac{40c+3}{x}\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&m=0\text{ or }\left(c=-\frac{3}{40}\text{ and }x=0\right)\end{matrix}\right,
Megoldás a(z) c változóra
\left\{\begin{matrix}\\c=\frac{dx-3}{40}\text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&m=0\end{matrix}\right,
Megoldás a(z) d változóra
\left\{\begin{matrix}d=\frac{40c+3}{x}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&m=0\text{ or }\left(c=-\frac{3}{40}\text{ and }x=0\right)\end{matrix}\right,
Grafikon
Megosztás
Átmásolva a vágólapra
40cm=xdm-3m
Mindkét oldalból kivonjuk a következőt: 3m.
40mc=dmx-3m
Az egyenlet kanonikus alakban van.
\frac{40mc}{40m}=\frac{m\left(dx-3\right)}{40m}
Mindkét oldalt elosztjuk ennyivel: 40m.
c=\frac{m\left(dx-3\right)}{40m}
A(z) 40m értékkel való osztás eltünteti a(z) 40m értékkel való szorzást.
c=\frac{dx-3}{40}
m\left(xd-3\right) elosztása a következővel: 40m.
xdm=3m+40cm
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
mxd=40cm+3m
Az egyenlet kanonikus alakban van.
\frac{mxd}{mx}=\frac{m\left(40c+3\right)}{mx}
Mindkét oldalt elosztjuk ennyivel: xm.
d=\frac{m\left(40c+3\right)}{mx}
A(z) xm értékkel való osztás eltünteti a(z) xm értékkel való szorzást.
d=\frac{40c+3}{x}
m\left(3+40c\right) elosztása a következővel: xm.
40cm=xdm-3m
Mindkét oldalból kivonjuk a következőt: 3m.
40mc=dmx-3m
Az egyenlet kanonikus alakban van.
\frac{40mc}{40m}=\frac{m\left(dx-3\right)}{40m}
Mindkét oldalt elosztjuk ennyivel: 40m.
c=\frac{m\left(dx-3\right)}{40m}
A(z) 40m értékkel való osztás eltünteti a(z) 40m értékkel való szorzást.
c=\frac{dx-3}{40}
m\left(xd-3\right) elosztása a következővel: 40m.
xdm=3m+40cm
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
mxd=40cm+3m
Az egyenlet kanonikus alakban van.
\frac{mxd}{mx}=\frac{m\left(40c+3\right)}{mx}
Mindkét oldalt elosztjuk ennyivel: xm.
d=\frac{m\left(40c+3\right)}{mx}
A(z) xm értékkel való osztás eltünteti a(z) xm értékkel való szorzást.
d=\frac{40c+3}{x}
m\left(3+40c\right) elosztása a következővel: xm.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}