Szorzattá alakítás
\left(t-3\right)\left(t-1\right)
Kiértékelés
\left(t-3\right)\left(t-1\right)
Megosztás
Átmásolva a vágólapra
t^{2}-4t+3
Átrendezzük a polinomot, kanonikus formára hozva azt. A tagokat sorba rendezzük a legnagyobb kitevőjűtől a legkisebb kitevőjűig.
a+b=-4 ab=1\times 3=3
Csoportosítással tényezőkre bontjuk a kifejezést úgy, hogy először átírjuk t^{2}+at+bt+3 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
a=-3 b=-1
Mivel ab pozitív, a és b azonos aláírására. Mivel a a+b negatív, a és b negatív. Az egyetlen ilyen pár a rendszermegoldás.
\left(t^{2}-3t\right)+\left(-t+3\right)
Átírjuk az értéket (t^{2}-4t+3) \left(t^{2}-3t\right)+\left(-t+3\right) alakban.
t\left(t-3\right)-\left(t-3\right)
A t a második csoportban lévő első és -1 faktort.
\left(t-3\right)\left(t-1\right)
A disztributivitási tulajdonság használatával emelje ki a(z) t-3 általános kifejezést a zárójelből.
t^{2}-4t+3=0
A másodfokú polinomiális kifejezés ezzel a transzformációval faktorálható: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). A másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása x_{1} és x_{2}.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
t=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Négyzetre emeljük a következőt: -4.
t=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Összeszorozzuk a következőket: -4 és 3.
t=\frac{-\left(-4\right)±\sqrt{4}}{2}
Összeadjuk a következőket: 16 és -12.
t=\frac{-\left(-4\right)±2}{2}
Négyzetgyököt vonunk a következőből: 4.
t=\frac{4±2}{2}
-4 ellentettje 4.
t=\frac{6}{2}
Megoldjuk az egyenletet (t=\frac{4±2}{2}). ± előjele pozitív. Összeadjuk a következőket: 4 és 2.
t=3
6 elosztása a következővel: 2.
t=\frac{2}{2}
Megoldjuk az egyenletet (t=\frac{4±2}{2}). ± előjele negatív. 2 kivonása a következőből: 4.
t=1
2 elosztása a következővel: 2.
t^{2}-4t+3=\left(t-3\right)\left(t-1\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) 3 értéket x_{1} helyére, a(z) 1 értéket pedig x_{2} helyére.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}