Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

±2,±6,±1,±3,±\frac{2}{3},±\frac{1}{3}
A Rolle-féle gyöktétel alapján, a polinom összes racionális gyöke \frac{p}{q} formájú, ahol p osztója a(z) -6 állandónak, és q osztója a(z) 3 főegyütthatónak. Az összes lehetséges \frac{p}{q} listázása.
x=-1
Keresünk egy ilyen gyököt úgy, hogy az összes egész értékkel próbálkozunk, az abszolút érték szerinti legkisebbel kezdve. Ha nincs találat egész gyökökre, törtekkel próbálkozunk tovább.
3x^{2}-7x-6=0
A faktorizációs tétel alapján a(z) x-k minden k gyök esetén osztója a polinomnak. Elosztjuk a(z) 3x^{3}-4x^{2}-13x-6 értéket a(z) x+1 értékkel. Az eredmény 3x^{2}-7x-6. Megoldjuk az egyenletet úgy, hogy 0 legyen az eredménye.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\left(-6\right)}}{2\times 3}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Behelyettesítjük a(z) 3 értéket a-ba, a(z) -7 értéket b-be és a(z) -6 értéket c-be a megoldóképletben.
x=\frac{7±11}{6}
Elvégezzük a számításokat.
x=-\frac{2}{3} x=3
Megoldjuk az egyenletet (3x^{2}-7x-6=0). ± előjele pozitív, ± előjele pedig negatív.
x=-1 x=-\frac{2}{3} x=3
Listát készítünk az összes lehetséges megoldásról.