Ugrás a tartalomra
Szorzattá alakítás
Tick mark Image
Kiértékelés
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

3x^{2}-5x-9=0
A másodfokú polinomiális kifejezés ezzel a transzformációval faktorálható: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). A másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása x_{1} és x_{2}.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-9\right)}}{2\times 3}
Négyzetre emeljük a következőt: -5.
x=\frac{-\left(-5\right)±\sqrt{25-12\left(-9\right)}}{2\times 3}
Összeszorozzuk a következőket: -4 és 3.
x=\frac{-\left(-5\right)±\sqrt{25+108}}{2\times 3}
Összeszorozzuk a következőket: -12 és -9.
x=\frac{-\left(-5\right)±\sqrt{133}}{2\times 3}
Összeadjuk a következőket: 25 és 108.
x=\frac{5±\sqrt{133}}{2\times 3}
-5 ellentettje 5.
x=\frac{5±\sqrt{133}}{6}
Összeszorozzuk a következőket: 2 és 3.
x=\frac{\sqrt{133}+5}{6}
Megoldjuk az egyenletet (x=\frac{5±\sqrt{133}}{6}). ± előjele pozitív. Összeadjuk a következőket: 5 és \sqrt{133}.
x=\frac{5-\sqrt{133}}{6}
Megoldjuk az egyenletet (x=\frac{5±\sqrt{133}}{6}). ± előjele negatív. \sqrt{133} kivonása a következőből: 5.
3x^{2}-5x-9=3\left(x-\frac{\sqrt{133}+5}{6}\right)\left(x-\frac{5-\sqrt{133}}{6}\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) \frac{5+\sqrt{133}}{6} értéket x_{1} helyére, a(z) \frac{5-\sqrt{133}}{6} értéket pedig x_{2} helyére.