Megoldás a(z) y változóra
y=\frac{\left(1-2x\right)^{\frac{2}{3}}+9}{27}
x\geq \frac{1}{2}
Megoldás a(z) x változóra (complex solution)
x=\frac{81\sqrt{3y-1}y-27\sqrt{3y-1}+1}{2}
|\frac{arg(3y-1)}{2}-arg(-\sqrt[3]{-\left(3y-1\right)^{\frac{3}{2}}})|<\frac{2\pi }{3}\text{ or }y=\frac{1}{3}
Megoldás a(z) y változóra (complex solution)
y = \frac{1}{3} = 0,3333333333333333
x = \frac{1}{2} = 0,5
Megoldás a(z) x változóra
x=\frac{81\sqrt{3y-1}y-27\sqrt{3y-1}+1}{2}
y\geq \frac{1}{3}
Grafikon
Megosztás
Átmásolva a vágólapra
3\sqrt{3y-1}+\sqrt[3]{1-2x}-\sqrt[3]{1-2x}=-\sqrt[3]{1-2x}
Kivonjuk az egyenlet mindkét oldalából a következőt: \sqrt[3]{1-2x}.
3\sqrt{3y-1}=-\sqrt[3]{1-2x}
Ha kivonjuk a(z) \sqrt[3]{1-2x} értéket önmagából, az eredmény 0 lesz.
\frac{3\sqrt{3y-1}}{3}=-\frac{\sqrt[3]{1-2x}}{3}
Mindkét oldalt elosztjuk ennyivel: 3.
\sqrt{3y-1}=-\frac{\sqrt[3]{1-2x}}{3}
A(z) 3 értékkel való osztás eltünteti a(z) 3 értékkel való szorzást.
3y-1=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}
Az egyenlet mindkét oldalát négyzetre emeljük.
3y-1-\left(-1\right)=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}-\left(-1\right)
Hozzáadjuk az egyenlet mindkét oldalához a következőt: 1.
3y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}-\left(-1\right)
Ha kivonjuk a(z) -1 értéket önmagából, az eredmény 0 lesz.
3y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1
-1 kivonása a következőből: \frac{\left(1-2x\right)^{\frac{2}{3}}}{9}.
\frac{3y}{3}=\frac{\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1}{3}
Mindkét oldalt elosztjuk ennyivel: 3.
y=\frac{\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1}{3}
A(z) 3 értékkel való osztás eltünteti a(z) 3 értékkel való szorzást.
y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{27}+\frac{1}{3}
\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1 elosztása a következővel: 3.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}