Megoldás a(z) y változóra (complex solution)
\left\{\begin{matrix}y=-\frac{211x^{2}+2013x+9933}{2012x+222z+2023}\text{, }&x\neq -\frac{111z}{1006}-\frac{2023}{2012}\\y\in \mathrm{C}\text{, }&\left(x=\frac{-\sqrt{4331283}i-2013}{422}\text{ and }z=\frac{503\sqrt{4331283}i}{23421}+\frac{1598225}{46842}\right)\text{ or }\left(x=\frac{-2013+\sqrt{4331283}i}{422}\text{ and }z=-\frac{503\sqrt{4331283}i}{23421}+\frac{1598225}{46842}\right)\end{matrix}\right,
Megoldás a(z) y változóra
y=-\frac{211x^{2}+2013x+9933}{2012x+222z+2023}
x\neq -\frac{111z}{1006}-\frac{2023}{2012}
Megoldás a(z) x változóra (complex solution)
x=\frac{\sqrt{4048144y^{2}-187368yz+6392900y-4331283}}{422}-\frac{1006y}{211}-\frac{2013}{422}
x=-\frac{\sqrt{4048144y^{2}-187368yz+6392900y-4331283}}{422}-\frac{1006y}{211}-\frac{2013}{422}
Megoldás a(z) x változóra
x=\frac{\sqrt{4048144y^{2}-187368yz+6392900y-4331283}}{422}-\frac{1006y}{211}-\frac{2013}{422}
x=-\frac{\sqrt{4048144y^{2}-187368yz+6392900y-4331283}}{422}-\frac{1006y}{211}-\frac{2013}{422}\text{, }y\leq -\frac{\sqrt{\left(1598225-46842z\right)^{2}+4383414322188}}{2024072}+\frac{23421z}{1012036}-\frac{1598225}{2024072}\text{ or }y\geq \frac{\sqrt{\left(1598225-46842z\right)^{2}+4383414322188}}{2024072}+\frac{23421z}{1012036}-\frac{1598225}{2024072}
Teszt
Algebra
5 ehhez hasonló probléma:
211 x ^ { 2 } + 2012 x y + 222 y z + 2013 x + 2023 y + 9933 = 0
Megosztás
Átmásolva a vágólapra
2012xy+222yz+2013x+2023y+9933=-211x^{2}
Mindkét oldalból kivonjuk a következőt: 211x^{2}. Ha nullából von ki számot, annak ellentettjét kapja.
2012xy+222yz+2023y+9933=-211x^{2}-2013x
Mindkét oldalból kivonjuk a következőt: 2013x.
2012xy+222yz+2023y=-211x^{2}-2013x-9933
Mindkét oldalból kivonjuk a következőt: 9933.
\left(2012x+222z+2023\right)y=-211x^{2}-2013x-9933
Összevonunk minden tagot, amelyben szerepel y.
\frac{\left(2012x+222z+2023\right)y}{2012x+222z+2023}=\frac{-211x^{2}-2013x-9933}{2012x+222z+2023}
Mindkét oldalt elosztjuk ennyivel: 2012x+222z+2023.
y=\frac{-211x^{2}-2013x-9933}{2012x+222z+2023}
A(z) 2012x+222z+2023 értékkel való osztás eltünteti a(z) 2012x+222z+2023 értékkel való szorzást.
y=-\frac{211x^{2}+2013x+9933}{2012x+222z+2023}
-211x^{2}-2013x-9933 elosztása a következővel: 2012x+222z+2023.
2012xy+222yz+2013x+2023y+9933=-211x^{2}
Mindkét oldalból kivonjuk a következőt: 211x^{2}. Ha nullából von ki számot, annak ellentettjét kapja.
2012xy+222yz+2023y+9933=-211x^{2}-2013x
Mindkét oldalból kivonjuk a következőt: 2013x.
2012xy+222yz+2023y=-211x^{2}-2013x-9933
Mindkét oldalból kivonjuk a következőt: 9933.
\left(2012x+222z+2023\right)y=-211x^{2}-2013x-9933
Összevonunk minden tagot, amelyben szerepel y.
\frac{\left(2012x+222z+2023\right)y}{2012x+222z+2023}=\frac{-211x^{2}-2013x-9933}{2012x+222z+2023}
Mindkét oldalt elosztjuk ennyivel: 2012x+222z+2023.
y=\frac{-211x^{2}-2013x-9933}{2012x+222z+2023}
A(z) 2012x+222z+2023 értékkel való osztás eltünteti a(z) 2012x+222z+2023 értékkel való szorzást.
y=-\frac{211x^{2}+2013x+9933}{2012x+222z+2023}
-211x^{2}-2013x-9933 elosztása a következővel: 2012x+222z+2023.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}