Megoldás a(z) x változóra
x=6
Grafikon
Megosztás
Átmásolva a vágólapra
2x=\frac{119}{11}+\frac{13}{11}
Bővítsük az egyenlet mindkét oldalát ezzel: \frac{13}{11}.
2x=\frac{119+13}{11}
Mivel \frac{119}{11} és \frac{13}{11} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
2x=\frac{132}{11}
Összeadjuk a következőket: 119 és 13. Az eredmény 132.
2x=12
Elosztjuk a(z) 132 értéket a(z) 11 értékkel. Az eredmény 12.
x=\frac{12}{2}
Mindkét oldalt elosztjuk ennyivel: 2.
x=6
Elosztjuk a(z) 12 értéket a(z) 2 értékkel. Az eredmény 6.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}