Ugrás a tartalomra
Szorzattá alakítás
Tick mark Image
Kiértékelés
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

a+b=-1 ab=2\left(-6\right)=-12
Csoportosítással tényezőkre bontjuk a kifejezést úgy, hogy először átírjuk 2x^{2}+ax+bx-6 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
1,-12 2,-6 3,-4
Mivel a ab negatív, a és b rendelkezik a megfelelő előjel között. Mivel a a+b negatív, a negatív szám nagyobb abszolút értéket tartalmaz, mint a pozitív érték. Listát készítünk minden olyan egész párról, amelynek szorzata -12.
1-12=-11 2-6=-4 3-4=-1
Kiszámítjuk az egyes párok összegét.
a=-4 b=3
A megoldás az a pár, amelynek összege -1.
\left(2x^{2}-4x\right)+\left(3x-6\right)
Átírjuk az értéket (2x^{2}-x-6) \left(2x^{2}-4x\right)+\left(3x-6\right) alakban.
2x\left(x-2\right)+3\left(x-2\right)
A 2x a második csoportban lévő első és 3 faktort.
\left(x-2\right)\left(2x+3\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-2 általános kifejezést a zárójelből.
2x^{2}-x-6=0
A másodfokú polinomiális kifejezés ezzel a transzformációval faktorálható: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). A másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása x_{1} és x_{2}.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
Összeszorozzuk a következőket: -4 és 2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
Összeszorozzuk a következőket: -8 és -6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
Összeadjuk a következőket: 1 és 48.
x=\frac{-\left(-1\right)±7}{2\times 2}
Négyzetgyököt vonunk a következőből: 49.
x=\frac{1±7}{2\times 2}
-1 ellentettje 1.
x=\frac{1±7}{4}
Összeszorozzuk a következőket: 2 és 2.
x=\frac{8}{4}
Megoldjuk az egyenletet (x=\frac{1±7}{4}). ± előjele pozitív. Összeadjuk a következőket: 1 és 7.
x=2
8 elosztása a következővel: 4.
x=-\frac{6}{4}
Megoldjuk az egyenletet (x=\frac{1±7}{4}). ± előjele negatív. 7 kivonása a következőből: 1.
x=-\frac{3}{2}
A törtet (\frac{-6}{4}) leegyszerűsítjük 2 kivonásával és kiejtésével.
2x^{2}-x-6=2\left(x-2\right)\left(x-\left(-\frac{3}{2}\right)\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) 2 értéket x_{1} helyére, a(z) -\frac{3}{2} értéket pedig x_{2} helyére.
2x^{2}-x-6=2\left(x-2\right)\left(x+\frac{3}{2}\right)
A(z) p-\left(-q\right) alakú kifejezések egyszerűsítése p+q alakúvá.
2x^{2}-x-6=2\left(x-2\right)\times \frac{2x+3}{2}
\frac{3}{2} és x összeadásához megkeressük a közös nevezőt, majd összeadjuk a számlálókat. Ezután ha lehetséges, egyszerűsítjük a törtet.
2x^{2}-x-6=\left(x-2\right)\left(2x+3\right)
A legnagyobb közös osztó (2) kiejtése itt: 2 és 2.