Megoldás a(z) h változóra (complex solution)
\left\{\begin{matrix}\\h=0\text{, }&\text{unconditionally}\\h\in \mathrm{C}\text{, }&s=\frac{5s_{24}}{6}\text{ or }r=0\end{matrix}\right,
Megoldás a(z) r változóra (complex solution)
\left\{\begin{matrix}\\r=0\text{, }&\text{unconditionally}\\r\in \mathrm{C}\text{, }&s=\frac{5s_{24}}{6}\text{ or }h=0\end{matrix}\right,
Megoldás a(z) h változóra
\left\{\begin{matrix}\\h=0\text{, }&\text{unconditionally}\\h\in \mathrm{R}\text{, }&s=\frac{5s_{24}}{6}\text{ or }r=0\end{matrix}\right,
Megoldás a(z) r változóra
\left\{\begin{matrix}\\r=0\text{, }&\text{unconditionally}\\r\in \mathrm{R}\text{, }&s=\frac{5s_{24}}{6}\text{ or }h=0\end{matrix}\right,
Megosztás
Átmásolva a vágólapra
\left(2\times 5+2\right)hrs=10hrs_{24}
Az egyenlet mindkét oldalát megszorozzuk a következővel: 5.
\left(10+2\right)hrs=10hrs_{24}
Összeszorozzuk a következőket: 2 és 5. Az eredmény 10.
12hrs=10hrs_{24}
Összeadjuk a következőket: 10 és 2. Az eredmény 12.
12hrs-10hrs_{24}=0
Mindkét oldalból kivonjuk a következőt: 10hrs_{24}.
\left(12rs-10rs_{24}\right)h=0
Összevonunk minden tagot, amelyben szerepel h.
h=0
0 elosztása a következővel: 12rs-10rs_{24}.
\left(2\times 5+2\right)hrs=10hrs_{24}
Az egyenlet mindkét oldalát megszorozzuk a következővel: 5.
\left(10+2\right)hrs=10hrs_{24}
Összeszorozzuk a következőket: 2 és 5. Az eredmény 10.
12hrs=10hrs_{24}
Összeadjuk a következőket: 10 és 2. Az eredmény 12.
12hrs-10hrs_{24}=0
Mindkét oldalból kivonjuk a következőt: 10hrs_{24}.
\left(12hs-10hs_{24}\right)r=0
Összevonunk minden tagot, amelyben szerepel r.
r=0
0 elosztása a következővel: 12hs-10hs_{24}.
\left(2\times 5+2\right)hrs=10hrs_{24}
Az egyenlet mindkét oldalát megszorozzuk a következővel: 5.
\left(10+2\right)hrs=10hrs_{24}
Összeszorozzuk a következőket: 2 és 5. Az eredmény 10.
12hrs=10hrs_{24}
Összeadjuk a következőket: 10 és 2. Az eredmény 12.
12hrs-10hrs_{24}=0
Mindkét oldalból kivonjuk a következőt: 10hrs_{24}.
\left(12rs-10rs_{24}\right)h=0
Összevonunk minden tagot, amelyben szerepel h.
h=0
0 elosztása a következővel: 12rs-10rs_{24}.
\left(2\times 5+2\right)hrs=10hrs_{24}
Az egyenlet mindkét oldalát megszorozzuk a következővel: 5.
\left(10+2\right)hrs=10hrs_{24}
Összeszorozzuk a következőket: 2 és 5. Az eredmény 10.
12hrs=10hrs_{24}
Összeadjuk a következőket: 10 és 2. Az eredmény 12.
12hrs-10hrs_{24}=0
Mindkét oldalból kivonjuk a következőt: 10hrs_{24}.
\left(12hs-10hs_{24}\right)r=0
Összevonunk minden tagot, amelyben szerepel r.
r=0
0 elosztása a következővel: 12hs-10hs_{24}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}