Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

16-8x+x^{2}=0
Bővítsük az egyenlet mindkét oldalát ezzel: x^{2}.
x^{2}-8x+16=0
Átrendezzük a polinomot, kanonikus formára hozva azt. A tagokat sorba rendezzük a legnagyobb kitevőjűtől a legkisebb kitevőjűig.
a+b=-8 ab=16
Az egyenlet megoldásához x^{2}-8x+16 a képlet használatával x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
-1,-16 -2,-8 -4,-4
Mivel ab pozitív, a és b azonos aláírására. Mivel a a+b negatív, a és b negatív. Listát készítünk minden olyan egész párról, amelynek szorzata 16.
-1-16=-17 -2-8=-10 -4-4=-8
Kiszámítjuk az egyes párok összegét.
a=-4 b=-4
A megoldás az a pár, amelynek összege -8.
\left(x-4\right)\left(x-4\right)
Az eredményül kapott értékeket használva átírjuk a tényezőkre bontott \left(x+a\right)\left(x+b\right) kifejezést.
\left(x-4\right)^{2}
Átírjuk kéttagú kifejezés négyzetére.
x=4
Az egyenlet megoldásához elvégezzük ezt a műveletet: x-4=0.
16-8x+x^{2}=0
Bővítsük az egyenlet mindkét oldalát ezzel: x^{2}.
x^{2}-8x+16=0
Átrendezzük a polinomot, kanonikus formára hozva azt. A tagokat sorba rendezzük a legnagyobb kitevőjűtől a legkisebb kitevőjűig.
a+b=-8 ab=1\times 16=16
Az egyenlet megoldásához csoportosítással tényezőkre bontjuk az egyenlőségjeltől balra lévő kifejezést úgy, hogy először átírjuk x^{2}+ax+bx+16 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
-1,-16 -2,-8 -4,-4
Mivel ab pozitív, a és b azonos aláírására. Mivel a a+b negatív, a és b negatív. Listát készítünk minden olyan egész párról, amelynek szorzata 16.
-1-16=-17 -2-8=-10 -4-4=-8
Kiszámítjuk az egyes párok összegét.
a=-4 b=-4
A megoldás az a pár, amelynek összege -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Átírjuk az értéket (x^{2}-8x+16) \left(x^{2}-4x\right)+\left(-4x+16\right) alakban.
x\left(x-4\right)-4\left(x-4\right)
A x a második csoportban lévő első és -4 faktort.
\left(x-4\right)\left(x-4\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-4 általános kifejezést a zárójelből.
\left(x-4\right)^{2}
Átírjuk kéttagú kifejezés négyzetére.
x=4
Az egyenlet megoldásához elvégezzük ezt a műveletet: x-4=0.
16-8x+x^{2}=0
Bővítsük az egyenlet mindkét oldalát ezzel: x^{2}.
x^{2}-8x+16=0
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) 1 értéket a-ba, a(z) -8 értéket b-be és a(z) 16 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Négyzetre emeljük a következőt: -8.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Összeszorozzuk a következőket: -4 és 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Összeadjuk a következőket: 64 és -64.
x=-\frac{-8}{2}
Négyzetgyököt vonunk a következőből: 0.
x=\frac{8}{2}
-8 ellentettje 8.
x=4
8 elosztása a következővel: 2.
16-8x+x^{2}=0
Bővítsük az egyenlet mindkét oldalát ezzel: x^{2}.
-8x+x^{2}=-16
Mindkét oldalból kivonjuk a következőt: 16. Ha nullából von ki számot, annak ellentettjét kapja.
x^{2}-8x=-16
Az ehhez hasonló másodfokú egyenletek teljes négyzetté alakítással oldhatók meg. A teljes négyzetté alakításhoz az egyenletet először x^{2}+bx=c alakra kell hozni.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Elosztjuk a(z) -8 értéket, az x-es tag együtthatóját 2-vel; ennek eredménye -4. Ezután hozzáadjuk -4 négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}-8x+16=-16+16
Négyzetre emeljük a következőt: -4.
x^{2}-8x+16=0
Összeadjuk a következőket: -16 és 16.
\left(x-4\right)^{2}=0
Tényezőkre x^{2}-8x+16. Ha x^{2}+bx+c egy tökéletes négyzet, akkor mindig \left(x+\frac{b}{2}\right)^{2} lehet szorzattá tenni.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x-4=0 x-4=0
Egyszerűsítünk.
x=4 x=4
Hozzáadjuk az egyenlet mindkét oldalához a következőt: 4.
x=4
Megoldottuk az egyenletet. Azonosak a megoldások.