Megoldás a(z) a változóra
a<1
Megosztás
Átmásolva a vágólapra
16-3a>7a+6
Összevonjuk a következőket: a és -4a. Az eredmény -3a.
16-3a-7a>6
Mindkét oldalból kivonjuk a következőt: 7a.
16-10a>6
Összevonjuk a következőket: -3a és -7a. Az eredmény -10a.
-10a>6-16
Mindkét oldalból kivonjuk a következőt: 16.
-10a>-10
Kivonjuk a(z) 16 értékből a(z) 6 értéket. Az eredmény -10.
a<\frac{-10}{-10}
Mindkét oldalt elosztjuk ennyivel: -10. A(z) -10 negatív, ezért az egyenlőtlenség iránya megváltozik.
a<1
Elosztjuk a(z) -10 értéket a(z) -10 értékkel. Az eredmény 1.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}