Megoldás a(z) K változóra (complex solution)
K=-\frac{2q^{N}}{3}+12
Megoldás a(z) N változóra (complex solution)
\left\{\begin{matrix}N=\frac{2\pi n_{1}i}{\ln(q)}+\log_{q}\left(-\frac{3K}{2}+18\right)\text{, }n_{1}\in \mathrm{Z}\text{, }&K\neq 12\text{ and }q\neq 1\text{ and }q\neq 0\\N\in \mathrm{C}\text{, }&\left(q=0\text{ and }K=12\right)\text{ or }\left(q=1\text{ and }K=\frac{34}{3}\right)\end{matrix}\right,
Megoldás a(z) K változóra
K=-\frac{2q^{N}}{3}+12
\left(q<0\text{ and }Denominator(N)\text{bmod}2=1\right)\text{ or }\left(q=0\text{ and }N>0\right)\text{ or }q>0
Megoldás a(z) N változóra
\left\{\begin{matrix}N=\log_{q}\left(-\frac{3K}{2}+18\right)\text{, }&K<12\text{ and }q\neq 1\text{ and }q>0\\N\in \mathrm{R}\text{, }&\left(q=1\text{ and }K=\frac{34}{3}\right)\text{ or }\left(q=-1\text{ and }K=\frac{38}{3}\text{ and }Denominator(N)\text{bmod}2=1\text{ and }Numerator(N)\text{bmod}2=1\right)\\N>0\text{, }&q=0\text{ and }K=12\end{matrix}\right,
Megosztás
Átmásolva a vágólapra
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}