Kiértékelés
\frac{594016}{27}\approx 22000,592592593
Szorzattá alakítás
\frac{2 ^ {5} \cdot 19 \cdot 977}{3 ^ {3}} = 22000\frac{16}{27} = 22000,59259259259
Megosztás
Átmásolva a vágólapra
\frac{30000+2}{3}-4000-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Összeszorozzuk a következőket: 10000 és 3. Az eredmény 30000.
\frac{30002}{3}-4000-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Összeadjuk a következőket: 30000 és 2. Az eredmény 30002.
\frac{30002}{3}-\frac{12000}{3}-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Átalakítjuk a számot (4000) törtté (\frac{12000}{3}).
\frac{30002-12000}{3}-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Mivel \frac{30002}{3} és \frac{12000}{3} nevezője ugyanaz, a kivonásukhoz kivonjuk egymásból a számlálójukat.
\frac{18002}{3}-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Kivonjuk a(z) 12000 értékből a(z) 30002 értéket. Az eredmény 18002.
\frac{162018}{27}-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
3 és 27 legkisebb közös többszöröse 27. Átalakítjuk a számokat (\frac{18002}{3} és \frac{8}{27}) törtekké, amelyek nevezője 27.
\frac{162018-8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Mivel \frac{162018}{27} és \frac{8}{27} nevezője ugyanaz, a kivonásukhoz kivonjuk egymásból a számlálójukat.
\frac{162010}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Kivonjuk a(z) 8 értékből a(z) 162018 értéket. Az eredmény 162010.
\frac{162010}{27}-\frac{216000}{27}-\frac{4}{9}+\frac{24000\times 3+2}{3}
Átalakítjuk a számot (8000) törtté (\frac{216000}{27}).
\frac{162010-216000}{27}-\frac{4}{9}+\frac{24000\times 3+2}{3}
Mivel \frac{162010}{27} és \frac{216000}{27} nevezője ugyanaz, a kivonásukhoz kivonjuk egymásból a számlálójukat.
-\frac{53990}{27}-\frac{4}{9}+\frac{24000\times 3+2}{3}
Kivonjuk a(z) 216000 értékből a(z) 162010 értéket. Az eredmény -53990.
-\frac{53990}{27}-\frac{12}{27}+\frac{24000\times 3+2}{3}
27 és 9 legkisebb közös többszöröse 27. Átalakítjuk a számokat (-\frac{53990}{27} és \frac{4}{9}) törtekké, amelyek nevezője 27.
\frac{-53990-12}{27}+\frac{24000\times 3+2}{3}
Mivel -\frac{53990}{27} és \frac{12}{27} nevezője ugyanaz, a kivonásukhoz kivonjuk egymásból a számlálójukat.
-\frac{54002}{27}+\frac{24000\times 3+2}{3}
Kivonjuk a(z) 12 értékből a(z) -53990 értéket. Az eredmény -54002.
-\frac{54002}{27}+\frac{72000+2}{3}
Összeszorozzuk a következőket: 24000 és 3. Az eredmény 72000.
-\frac{54002}{27}+\frac{72002}{3}
Összeadjuk a következőket: 72000 és 2. Az eredmény 72002.
-\frac{54002}{27}+\frac{648018}{27}
27 és 3 legkisebb közös többszöröse 27. Átalakítjuk a számokat (-\frac{54002}{27} és \frac{72002}{3}) törtekké, amelyek nevezője 27.
\frac{-54002+648018}{27}
Mivel -\frac{54002}{27} és \frac{648018}{27} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{594016}{27}
Összeadjuk a következőket: -54002 és 648018. Az eredmény 594016.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}