Megoldás a(z) x változóra
x=-1
x=\frac{2}{3}\approx 0,666666667
Grafikon
Megosztás
Átmásolva a vágólapra
1-x^{2}-2x^{2}=-1+x
Mindkét oldalból kivonjuk a következőt: 2x^{2}.
1-3x^{2}=-1+x
Összevonjuk a következőket: -x^{2} és -2x^{2}. Az eredmény -3x^{2}.
1-3x^{2}-\left(-1\right)=x
Mindkét oldalból kivonjuk a következőt: -1.
1-3x^{2}+1=x
-1 ellentettje 1.
2\times 1-3x^{2}=x
Összevonjuk a következőket: 1 és 1. Az eredmény 2\times 1.
2\times 1-3x^{2}-x=0
Mindkét oldalból kivonjuk a következőt: x.
2-3x^{2}-x=0
Összeszorozzuk a következőket: 2 és 1. Az eredmény 2.
-3x^{2}-x+2=0
Átrendezzük a polinomot, kanonikus formára hozva azt. A tagokat sorba rendezzük a legnagyobb kitevőjűtől a legkisebb kitevőjűig.
a+b=-1 ab=-3\times 2=-6
Az egyenlet megoldásához csoportosítással tényezőkre bontjuk az egyenlőségjeltől balra lévő kifejezést úgy, hogy először átírjuk -3x^{2}+ax+bx+2 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
1,-6 2,-3
Mivel a ab negatív, a és b rendelkezik a megfelelő előjel között. Mivel a a+b negatív, a negatív szám nagyobb abszolút értéket tartalmaz, mint a pozitív érték. Listát készítünk minden olyan egész párról, amelynek szorzata -6.
1-6=-5 2-3=-1
Kiszámítjuk az egyes párok összegét.
a=2 b=-3
A megoldás az a pár, amelynek összege -1.
\left(-3x^{2}+2x\right)+\left(-3x+2\right)
Átírjuk az értéket (-3x^{2}-x+2) \left(-3x^{2}+2x\right)+\left(-3x+2\right) alakban.
-x\left(3x-2\right)-\left(3x-2\right)
A -x a második csoportban lévő első és -1 faktort.
\left(3x-2\right)\left(-x-1\right)
A disztributivitási tulajdonság használatával emelje ki a(z) 3x-2 általános kifejezést a zárójelből.
x=\frac{2}{3} x=-1
Az egyenletmegoldások kereséséhez, a 3x-2=0 és a -x-1=0.
1-x^{2}-2x^{2}=-1+x
Mindkét oldalból kivonjuk a következőt: 2x^{2}.
1-3x^{2}=-1+x
Összevonjuk a következőket: -x^{2} és -2x^{2}. Az eredmény -3x^{2}.
1-3x^{2}-\left(-1\right)=x
Mindkét oldalból kivonjuk a következőt: -1.
1-3x^{2}+1=x
-1 ellentettje 1.
2\times 1-3x^{2}=x
Összevonjuk a következőket: 1 és 1. Az eredmény 2\times 1.
2\times 1-3x^{2}-x=0
Mindkét oldalból kivonjuk a következőt: x.
2-3x^{2}-x=0
Összeszorozzuk a következőket: 2 és 1. Az eredmény 2.
-3x^{2}-x+2=0
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-3\right)\times 2}}{2\left(-3\right)}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) -3 értéket a-ba, a(z) -1 értéket b-be és a(z) 2 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+12\times 2}}{2\left(-3\right)}
Összeszorozzuk a következőket: -4 és -3.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\left(-3\right)}
Összeszorozzuk a következőket: 12 és 2.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\left(-3\right)}
Összeadjuk a következőket: 1 és 24.
x=\frac{-\left(-1\right)±5}{2\left(-3\right)}
Négyzetgyököt vonunk a következőből: 25.
x=\frac{1±5}{2\left(-3\right)}
-1 ellentettje 1.
x=\frac{1±5}{-6}
Összeszorozzuk a következőket: 2 és -3.
x=\frac{6}{-6}
Megoldjuk az egyenletet (x=\frac{1±5}{-6}). ± előjele pozitív. Összeadjuk a következőket: 1 és 5.
x=-1
6 elosztása a következővel: -6.
x=-\frac{4}{-6}
Megoldjuk az egyenletet (x=\frac{1±5}{-6}). ± előjele negatív. 5 kivonása a következőből: 1.
x=\frac{2}{3}
A törtet (\frac{-4}{-6}) leegyszerűsítjük 2 kivonásával és kiejtésével.
x=-1 x=\frac{2}{3}
Megoldottuk az egyenletet.
1-x^{2}-2x^{2}=-1+x
Mindkét oldalból kivonjuk a következőt: 2x^{2}.
1-3x^{2}=-1+x
Összevonjuk a következőket: -x^{2} és -2x^{2}. Az eredmény -3x^{2}.
1-3x^{2}-x=-1
Mindkét oldalból kivonjuk a következőt: x.
-3x^{2}-x=-1-1
Mindkét oldalból kivonjuk a következőt: 1.
-3x^{2}-x=-2
Kivonjuk a(z) 1 értékből a(z) -1 értéket. Az eredmény -2.
\frac{-3x^{2}-x}{-3}=-\frac{2}{-3}
Mindkét oldalt elosztjuk ennyivel: -3.
x^{2}+\left(-\frac{1}{-3}\right)x=-\frac{2}{-3}
A(z) -3 értékkel való osztás eltünteti a(z) -3 értékkel való szorzást.
x^{2}+\frac{1}{3}x=-\frac{2}{-3}
-1 elosztása a következővel: -3.
x^{2}+\frac{1}{3}x=\frac{2}{3}
-2 elosztása a következővel: -3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(\frac{1}{6}\right)^{2}
Elosztjuk a(z) \frac{1}{3} értéket, az x-es tag együtthatóját 2-vel; ennek eredménye \frac{1}{6}. Ezután hozzáadjuk \frac{1}{6} négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
A(z) \frac{1}{6} négyzetre emeléséhez a tört számlálóját és nevezőjét is négyzetre emeljük.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
\frac{2}{3} és \frac{1}{36} összeadásához megkeressük a közös nevezőt, majd összeadjuk a számlálókat. Ezután ha lehetséges, egyszerűsítjük a törtet.
\left(x+\frac{1}{6}\right)^{2}=\frac{25}{36}
Tényezőkre x^{2}+\frac{1}{3}x+\frac{1}{36}. Ha x^{2}+bx+c egy tökéletes négyzet, akkor mindig \left(x+\frac{b}{2}\right)^{2} lehet szorzattá tenni.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x+\frac{1}{6}=\frac{5}{6} x+\frac{1}{6}=-\frac{5}{6}
Egyszerűsítünk.
x=\frac{2}{3} x=-1
Kivonjuk az egyenlet mindkét oldalából a következőt: \frac{1}{6}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}