Megoldás a(z) b változóra
b=-\frac{a}{3}+\frac{10}{3a}
a<0
Megoldás a(z) a változóra (complex solution)
\left\{\begin{matrix}a=\frac{-\sqrt{9b^{2}+40}-3b}{2}\text{, }&arg(\frac{-\sqrt{9b^{2}+40}-3b}{2})\geq \pi \\a=\frac{\sqrt{9b^{2}+40}-3b}{2}\text{, }&arg(\frac{\sqrt{9b^{2}+40}-3b}{2})\geq \pi \end{matrix}\right,
Megoldás a(z) b változóra (complex solution)
b=-\frac{a}{3}+\frac{10}{3a}
arg(a)\geq \pi \text{ and }a\neq 0
Megoldás a(z) a változóra
a=\frac{-\sqrt{9b^{2}+40}-3b}{2}
\left(\frac{\sqrt{9b^{2}+80}}{4}-\frac{\sqrt{9b^{2}+40}}{2}-\frac{3b}{4}\leq 0\text{ or }-\frac{\sqrt{9b^{2}+40}}{2}-\frac{\sqrt{9b^{2}+80}}{4}-\frac{3b}{4}\geq 0\right)\text{ and }b\leq \frac{\sqrt{9b^{2}+40}}{6}+\frac{3b}{2}
Megosztás
Átmásolva a vágólapra
\sqrt{2a^{2}+3ab-10}=-a
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
3ab+2a^{2}-10=a^{2}
Az egyenlet mindkét oldalát négyzetre emeljük.
3ab+2a^{2}-10-\left(2a^{2}-10\right)=a^{2}-\left(2a^{2}-10\right)
Kivonjuk az egyenlet mindkét oldalából a következőt: 2a^{2}-10.
3ab=a^{2}-\left(2a^{2}-10\right)
Ha kivonjuk a(z) 2a^{2}-10 értéket önmagából, az eredmény 0 lesz.
3ab=10-a^{2}
2a^{2}-10 kivonása a következőből: a^{2}.
\frac{3ab}{3a}=\frac{10-a^{2}}{3a}
Mindkét oldalt elosztjuk ennyivel: 3a.
b=\frac{10-a^{2}}{3a}
A(z) 3a értékkel való osztás eltünteti a(z) 3a értékkel való szorzást.
b=-\frac{a}{3}+\frac{10}{3a}
-a^{2}+10 elosztása a következővel: 3a.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}