Ugrás a tartalomra
Kiértékelés
Tick mark Image
Zárójel felbontása
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

-\left(81x^{2}+108x+36\right)+\left(3x+7\right)\left(3x-7\right)
Binomiális tétel (\left(a+b\right)^{2}=a^{2}+2ab+b^{2}) használatával kibontjuk a képletet (\left(9x+6\right)^{2}).
-81x^{2}-108x-36+\left(3x+7\right)\left(3x-7\right)
81x^{2}+108x+36 ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
-81x^{2}-108x-36+\left(3x\right)^{2}-49
Vegyük a következőt: \left(3x+7\right)\left(3x-7\right). A szorzás négyzetre emelt értékek különbségévé alakítható ezzel a szabállyal: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Négyzetre emeljük a következőt: 7.
-81x^{2}-108x-36+3^{2}x^{2}-49
Kifejtjük a következőt: \left(3x\right)^{2}.
-81x^{2}-108x-36+9x^{2}-49
Kiszámoljuk a(z) 3 érték 2. hatványát. Az eredmény 9.
-72x^{2}-108x-36-49
Összevonjuk a következőket: -81x^{2} és 9x^{2}. Az eredmény -72x^{2}.
-72x^{2}-108x-85
Kivonjuk a(z) 49 értékből a(z) -36 értéket. Az eredmény -85.
-\left(81x^{2}+108x+36\right)+\left(3x+7\right)\left(3x-7\right)
Binomiális tétel (\left(a+b\right)^{2}=a^{2}+2ab+b^{2}) használatával kibontjuk a képletet (\left(9x+6\right)^{2}).
-81x^{2}-108x-36+\left(3x+7\right)\left(3x-7\right)
81x^{2}+108x+36 ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
-81x^{2}-108x-36+\left(3x\right)^{2}-49
Vegyük a következőt: \left(3x+7\right)\left(3x-7\right). A szorzás négyzetre emelt értékek különbségévé alakítható ezzel a szabállyal: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Négyzetre emeljük a következőt: 7.
-81x^{2}-108x-36+3^{2}x^{2}-49
Kifejtjük a következőt: \left(3x\right)^{2}.
-81x^{2}-108x-36+9x^{2}-49
Kiszámoljuk a(z) 3 érték 2. hatványát. Az eredmény 9.
-72x^{2}-108x-36-49
Összevonjuk a következőket: -81x^{2} és 9x^{2}. Az eredmény -72x^{2}.
-72x^{2}-108x-85
Kivonjuk a(z) 49 értékből a(z) -36 értéket. Az eredmény -85.