Megoldás a(z) x változóra
x=-1
x=5
Grafikon
Megosztás
Átmásolva a vágólapra
x^{2}-4x+3=8
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x-1 és x-3), majd összevonjuk az egynemű tagokat.
x^{2}-4x+3-8=0
Mindkét oldalból kivonjuk a következőt: 8.
x^{2}-4x-5=0
Kivonjuk a(z) 8 értékből a(z) 3 értéket. Az eredmény -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) 1 értéket a-ba, a(z) -4 értéket b-be és a(z) -5 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Négyzetre emeljük a következőt: -4.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Összeszorozzuk a következőket: -4 és -5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
Összeadjuk a következőket: 16 és 20.
x=\frac{-\left(-4\right)±6}{2}
Négyzetgyököt vonunk a következőből: 36.
x=\frac{4±6}{2}
-4 ellentettje 4.
x=\frac{10}{2}
Megoldjuk az egyenletet (x=\frac{4±6}{2}). ± előjele pozitív. Összeadjuk a következőket: 4 és 6.
x=5
10 elosztása a következővel: 2.
x=-\frac{2}{2}
Megoldjuk az egyenletet (x=\frac{4±6}{2}). ± előjele negatív. 6 kivonása a következőből: 4.
x=-1
-2 elosztása a következővel: 2.
x=5 x=-1
Megoldottuk az egyenletet.
x^{2}-4x+3=8
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x-1 és x-3), majd összevonjuk az egynemű tagokat.
x^{2}-4x=8-3
Mindkét oldalból kivonjuk a következőt: 3.
x^{2}-4x=5
Kivonjuk a(z) 3 értékből a(z) 8 értéket. Az eredmény 5.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
Elosztjuk a(z) -4 értéket, az x-es tag együtthatóját 2-vel; ennek eredménye -2. Ezután hozzáadjuk -2 négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}-4x+4=5+4
Négyzetre emeljük a következőt: -2.
x^{2}-4x+4=9
Összeadjuk a következőket: 5 és 4.
\left(x-2\right)^{2}=9
Tényezőkre x^{2}-4x+4. Ha x^{2}+bx+c egy tökéletes négyzet, akkor mindig \left(x+\frac{b}{2}\right)^{2} lehet szorzattá tenni.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x-2=3 x-2=-3
Egyszerűsítünk.
x=5 x=-1
Hozzáadjuk az egyenlet mindkét oldalához a következőt: 2.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}