Megoldás a(z) x változóra
x=-4
x=2
Grafikon
Megosztás
Átmásolva a vágólapra
x^{2}+2x-3=5
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x-1 és x+3), majd összevonjuk az egynemű tagokat.
x^{2}+2x-3-5=0
Mindkét oldalból kivonjuk a következőt: 5.
x^{2}+2x-8=0
Kivonjuk a(z) 5 értékből a(z) -3 értéket. Az eredmény -8.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) 1 értéket a-ba, a(z) 2 értéket b-be és a(z) -8 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
Négyzetre emeljük a következőt: 2.
x=\frac{-2±\sqrt{4+32}}{2}
Összeszorozzuk a következőket: -4 és -8.
x=\frac{-2±\sqrt{36}}{2}
Összeadjuk a következőket: 4 és 32.
x=\frac{-2±6}{2}
Négyzetgyököt vonunk a következőből: 36.
x=\frac{4}{2}
Megoldjuk az egyenletet (x=\frac{-2±6}{2}). ± előjele pozitív. Összeadjuk a következőket: -2 és 6.
x=2
4 elosztása a következővel: 2.
x=-\frac{8}{2}
Megoldjuk az egyenletet (x=\frac{-2±6}{2}). ± előjele negatív. 6 kivonása a következőből: -2.
x=-4
-8 elosztása a következővel: 2.
x=2 x=-4
Megoldottuk az egyenletet.
x^{2}+2x-3=5
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x-1 és x+3), majd összevonjuk az egynemű tagokat.
x^{2}+2x=5+3
Bővítsük az egyenlet mindkét oldalát ezzel: 3.
x^{2}+2x=8
Összeadjuk a következőket: 5 és 3. Az eredmény 8.
x^{2}+2x+1^{2}=8+1^{2}
Elosztjuk a(z) 2 értéket, az x-es tag együtthatóját 2-vel; ennek eredménye 1. Ezután hozzáadjuk 1 négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}+2x+1=8+1
Négyzetre emeljük a következőt: 1.
x^{2}+2x+1=9
Összeadjuk a következőket: 8 és 1.
\left(x+1\right)^{2}=9
Tényezőkre x^{2}+2x+1. Ha x^{2}+bx+c egy tökéletes négyzet, akkor mindig \left(x+\frac{b}{2}\right)^{2} lehet szorzattá tenni.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x+1=3 x+1=-3
Egyszerűsítünk.
x=2 x=-4
Kivonjuk az egyenlet mindkét oldalából a következőt: 1.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}