Megoldás a(z) x változóra
x=-\frac{\left(y+3\right)^{2}}{8}-2
Megoldás a(z) y változóra (complex solution)
y=-2\sqrt{-2x-4}-3
y=2\sqrt{-2x-4}-3
Megoldás a(z) y változóra
y=-2\sqrt{-2x-4}-3
y=2\sqrt{-2x-4}-3\text{, }x\leq -2
Grafikon
Megosztás
Átmásolva a vágólapra
y^{2}+6y+9=-8\left(x+2\right)
Binomiális tétel (\left(a+b\right)^{2}=a^{2}+2ab+b^{2}) használatával kibontjuk a képletet (\left(y+3\right)^{2}).
y^{2}+6y+9=-8x-16
A disztributivitás felhasználásával összeszorozzuk a következőket: -8 és x+2.
-8x-16=y^{2}+6y+9
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
-8x=y^{2}+6y+9+16
Bővítsük az egyenlet mindkét oldalát ezzel: 16.
-8x=y^{2}+6y+25
Összeadjuk a következőket: 9 és 16. Az eredmény 25.
\frac{-8x}{-8}=\frac{y^{2}+6y+25}{-8}
Mindkét oldalt elosztjuk ennyivel: -8.
x=\frac{y^{2}+6y+25}{-8}
A(z) -8 értékkel való osztás eltünteti a(z) -8 értékkel való szorzást.
x=-\frac{y^{2}}{8}-\frac{3y}{4}-\frac{25}{8}
y^{2}+6y+25 elosztása a következővel: -8.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}