Megoldás a(z) x változóra
x=\sqrt{17}+6\approx 10,123105626
x=6-\sqrt{17}\approx 1,876894374
Grafikon
Megosztás
Átmásolva a vágólapra
x-6=\sqrt{17} x-6=-\sqrt{17}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x-6-\left(-6\right)=\sqrt{17}-\left(-6\right) x-6-\left(-6\right)=-\sqrt{17}-\left(-6\right)
Hozzáadjuk az egyenlet mindkét oldalához a következőt: 6.
x=\sqrt{17}-\left(-6\right) x=-\sqrt{17}-\left(-6\right)
Ha kivonjuk a(z) -6 értéket önmagából, az eredmény 0 lesz.
x=\sqrt{17}+6
-6 kivonása a következőből: \sqrt{17}.
x=6-\sqrt{17}
-6 kivonása a következőből: -\sqrt{17}.
x=\sqrt{17}+6 x=6-\sqrt{17}
Megoldottuk az egyenletet.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}