Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

x^{2}-5x+6=2
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x-3 és x-2), majd összevonjuk az egynemű tagokat.
x^{2}-5x+6-2=0
Mindkét oldalból kivonjuk a következőt: 2.
x^{2}-5x+4=0
Kivonjuk a(z) 2 értékből a(z) 6 értéket. Az eredmény 4.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) 1 értéket a-ba, a(z) -5 értéket b-be és a(z) 4 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Négyzetre emeljük a következőt: -5.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Összeszorozzuk a következőket: -4 és 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
Összeadjuk a következőket: 25 és -16.
x=\frac{-\left(-5\right)±3}{2}
Négyzetgyököt vonunk a következőből: 9.
x=\frac{5±3}{2}
-5 ellentettje 5.
x=\frac{8}{2}
Megoldjuk az egyenletet (x=\frac{5±3}{2}). ± előjele pozitív. Összeadjuk a következőket: 5 és 3.
x=4
8 elosztása a következővel: 2.
x=\frac{2}{2}
Megoldjuk az egyenletet (x=\frac{5±3}{2}). ± előjele negatív. 3 kivonása a következőből: 5.
x=1
2 elosztása a következővel: 2.
x=4 x=1
Megoldottuk az egyenletet.
x^{2}-5x+6=2
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x-3 és x-2), majd összevonjuk az egynemű tagokat.
x^{2}-5x=2-6
Mindkét oldalból kivonjuk a következőt: 6.
x^{2}-5x=-4
Kivonjuk a(z) 6 értékből a(z) 2 értéket. Az eredmény -4.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Elosztjuk a(z) -5 értéket, az x-es tag együtthatóját 2-vel; ennek eredménye -\frac{5}{2}. Ezután hozzáadjuk -\frac{5}{2} négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
A(z) -\frac{5}{2} négyzetre emeléséhez a tört számlálóját és nevezőjét is négyzetre emeljük.
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
Összeadjuk a következőket: -4 és \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
Tényezőkre x^{2}-5x+\frac{25}{4}. Ha x^{2}+bx+c egy tökéletes négyzet, akkor mindig \left(x+\frac{b}{2}\right)^{2} lehet szorzattá tenni.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
Egyszerűsítünk.
x=4 x=1
Hozzáadjuk az egyenlet mindkét oldalához a következőt: \frac{5}{2}.