Megoldás a(z) x változóra
x=-3
x=2
Grafikon
Teszt
Quadratic Equation
5 ehhez hasonló probléma:
( x - 1 ) ( x + 2 ) + 3 x = 4 ( x - 2 ) - ( x - 12 )
Megosztás
Átmásolva a vágólapra
x^{2}+x-2+3x=4\left(x-2\right)-\left(x-12\right)
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x-1 és x+2), majd összevonjuk az egynemű tagokat.
x^{2}+4x-2=4\left(x-2\right)-\left(x-12\right)
Összevonjuk a következőket: x és 3x. Az eredmény 4x.
x^{2}+4x-2=4x-8-\left(x-12\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: 4 és x-2.
x^{2}+4x-2=4x-8-x+12
x-12 ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
x^{2}+4x-2=3x-8+12
Összevonjuk a következőket: 4x és -x. Az eredmény 3x.
x^{2}+4x-2=3x+4
Összeadjuk a következőket: -8 és 12. Az eredmény 4.
x^{2}+4x-2-3x=4
Mindkét oldalból kivonjuk a következőt: 3x.
x^{2}+x-2=4
Összevonjuk a következőket: 4x és -3x. Az eredmény x.
x^{2}+x-2-4=0
Mindkét oldalból kivonjuk a következőt: 4.
x^{2}+x-6=0
Kivonjuk a(z) 4 értékből a(z) -2 értéket. Az eredmény -6.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) 1 értéket a-ba, a(z) 1 értéket b-be és a(z) -6 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
Négyzetre emeljük a következőt: 1.
x=\frac{-1±\sqrt{1+24}}{2}
Összeszorozzuk a következőket: -4 és -6.
x=\frac{-1±\sqrt{25}}{2}
Összeadjuk a következőket: 1 és 24.
x=\frac{-1±5}{2}
Négyzetgyököt vonunk a következőből: 25.
x=\frac{4}{2}
Megoldjuk az egyenletet (x=\frac{-1±5}{2}). ± előjele pozitív. Összeadjuk a következőket: -1 és 5.
x=2
4 elosztása a következővel: 2.
x=-\frac{6}{2}
Megoldjuk az egyenletet (x=\frac{-1±5}{2}). ± előjele negatív. 5 kivonása a következőből: -1.
x=-3
-6 elosztása a következővel: 2.
x=2 x=-3
Megoldottuk az egyenletet.
x^{2}+x-2+3x=4\left(x-2\right)-\left(x-12\right)
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x-1 és x+2), majd összevonjuk az egynemű tagokat.
x^{2}+4x-2=4\left(x-2\right)-\left(x-12\right)
Összevonjuk a következőket: x és 3x. Az eredmény 4x.
x^{2}+4x-2=4x-8-\left(x-12\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: 4 és x-2.
x^{2}+4x-2=4x-8-x+12
x-12 ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
x^{2}+4x-2=3x-8+12
Összevonjuk a következőket: 4x és -x. Az eredmény 3x.
x^{2}+4x-2=3x+4
Összeadjuk a következőket: -8 és 12. Az eredmény 4.
x^{2}+4x-2-3x=4
Mindkét oldalból kivonjuk a következőt: 3x.
x^{2}+x-2=4
Összevonjuk a következőket: 4x és -3x. Az eredmény x.
x^{2}+x=4+2
Bővítsük az egyenlet mindkét oldalát ezzel: 2.
x^{2}+x=6
Összeadjuk a következőket: 4 és 2. Az eredmény 6.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Elosztjuk a(z) 1 értéket, az x-es tag együtthatóját 2-vel; ennek eredménye \frac{1}{2}. Ezután hozzáadjuk \frac{1}{2} négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
A(z) \frac{1}{2} négyzetre emeléséhez a tört számlálóját és nevezőjét is négyzetre emeljük.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Összeadjuk a következőket: 6 és \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Tényezőkre x^{2}+x+\frac{1}{4}. Ha x^{2}+bx+c egy tökéletes négyzet, akkor mindig \left(x+\frac{b}{2}\right)^{2} lehet szorzattá tenni.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Egyszerűsítünk.
x=2 x=-3
Kivonjuk az egyenlet mindkét oldalából a következőt: \frac{1}{2}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}