Ugrás a tartalomra
Szorzattá alakítás
Tick mark Image
Kiértékelés
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

a+b=7 ab=1\left(-8\right)=-8
Csoportosítással tényezőkre bontjuk a kifejezést úgy, hogy először átírjuk x^{2}+ax+bx-8 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
-1,8 -2,4
Mivel a ab negatív, a és b rendelkezik a megfelelő előjel között. Mivel a a+b pozitív, a pozitív szám nagyobb abszolút értéket tartalmaz, mint a negatív érték. Listát készítünk minden olyan egész párról, amelynek szorzata -8.
-1+8=7 -2+4=2
Kiszámítjuk az egyes párok összegét.
a=-1 b=8
A megoldás az a pár, amelynek összege 7.
\left(x^{2}-x\right)+\left(8x-8\right)
Átírjuk az értéket (x^{2}+7x-8) \left(x^{2}-x\right)+\left(8x-8\right) alakban.
x\left(x-1\right)+8\left(x-1\right)
A x a második csoportban lévő első és 8 faktort.
\left(x-1\right)\left(x+8\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-1 általános kifejezést a zárójelből.
x^{2}+7x-8=0
A másodfokú polinomiális kifejezés ezzel a transzformációval faktorálható: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). A másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása x_{1} és x_{2}.
x=\frac{-7±\sqrt{7^{2}-4\left(-8\right)}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-7±\sqrt{49-4\left(-8\right)}}{2}
Négyzetre emeljük a következőt: 7.
x=\frac{-7±\sqrt{49+32}}{2}
Összeszorozzuk a következőket: -4 és -8.
x=\frac{-7±\sqrt{81}}{2}
Összeadjuk a következőket: 49 és 32.
x=\frac{-7±9}{2}
Négyzetgyököt vonunk a következőből: 81.
x=\frac{2}{2}
Megoldjuk az egyenletet (x=\frac{-7±9}{2}). ± előjele pozitív. Összeadjuk a következőket: -7 és 9.
x=1
2 elosztása a következővel: 2.
x=-\frac{16}{2}
Megoldjuk az egyenletet (x=\frac{-7±9}{2}). ± előjele negatív. 9 kivonása a következőből: -7.
x=-8
-16 elosztása a következővel: 2.
x^{2}+7x-8=\left(x-1\right)\left(x-\left(-8\right)\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) 1 értéket x_{1} helyére, a(z) -8 értéket pedig x_{2} helyére.
x^{2}+7x-8=\left(x-1\right)\left(x+8\right)
A(z) p-\left(-q\right) alakú kifejezések egyszerűsítése p+q alakúvá.