Megoldás a(z) k változóra (complex solution)
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
x\neq \frac{-1+\sqrt{3}i}{2}\text{ and }x\neq \frac{-\sqrt{3}i-1}{2}
Megoldás a(z) k változóra
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
Megoldás a(z) x változóra (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{9+2k-3k^{2}}-k-3}{2\left(k+1\right)}\text{; }x=-\frac{\sqrt{9+2k-3k^{2}}+k+3}{2\left(k+1\right)}\text{, }&k\neq -1\\x=\frac{1}{2}\text{, }&k=-1\end{matrix}\right,
Megoldás a(z) x változóra
\left\{\begin{matrix}x=\frac{\sqrt{9+2k-3k^{2}}-k-3}{2\left(k+1\right)}\text{; }x=-\frac{\sqrt{9+2k-3k^{2}}+k+3}{2\left(k+1\right)}\text{, }&k\neq -1\text{ and }k\geq \frac{1-2\sqrt{7}}{3}\text{ and }k\leq \frac{2\sqrt{7}+1}{3}\\x=\frac{1}{2}\text{, }&k=-1\end{matrix}\right,
Grafikon
Megosztás
Átmásolva a vágólapra
kx^{2}+x^{2}+\left(k+3\right)x+k=0
A disztributivitás felhasználásával összeszorozzuk a következőket: k+1 és x^{2}.
kx^{2}+x^{2}+kx+3x+k=0
A disztributivitás felhasználásával összeszorozzuk a következőket: k+3 és x.
kx^{2}+kx+3x+k=-x^{2}
Mindkét oldalból kivonjuk a következőt: x^{2}. Ha nullából von ki számot, annak ellentettjét kapja.
kx^{2}+kx+k=-x^{2}-3x
Mindkét oldalból kivonjuk a következőt: 3x.
\left(x^{2}+x+1\right)k=-x^{2}-3x
Összevonunk minden tagot, amelyben szerepel k.
\frac{\left(x^{2}+x+1\right)k}{x^{2}+x+1}=-\frac{x\left(x+3\right)}{x^{2}+x+1}
Mindkét oldalt elosztjuk ennyivel: x^{2}+x+1.
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
A(z) x^{2}+x+1 értékkel való osztás eltünteti a(z) x^{2}+x+1 értékkel való szorzást.
kx^{2}+x^{2}+\left(k+3\right)x+k=0
A disztributivitás felhasználásával összeszorozzuk a következőket: k+1 és x^{2}.
kx^{2}+x^{2}+kx+3x+k=0
A disztributivitás felhasználásával összeszorozzuk a következőket: k+3 és x.
kx^{2}+kx+3x+k=-x^{2}
Mindkét oldalból kivonjuk a következőt: x^{2}. Ha nullából von ki számot, annak ellentettjét kapja.
kx^{2}+kx+k=-x^{2}-3x
Mindkét oldalból kivonjuk a következőt: 3x.
\left(x^{2}+x+1\right)k=-x^{2}-3x
Összevonunk minden tagot, amelyben szerepel k.
\frac{\left(x^{2}+x+1\right)k}{x^{2}+x+1}=-\frac{x\left(x+3\right)}{x^{2}+x+1}
Mindkét oldalt elosztjuk ennyivel: x^{2}+x+1.
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
A(z) x^{2}+x+1 értékkel való osztás eltünteti a(z) x^{2}+x+1 értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}