Megoldás a(z) b változóra
\left\{\begin{matrix}b=-\frac{ia^{2}-4j-3i}{2aj-i}\text{, }&j=0\text{ or }a\neq \frac{i}{2j}\\b\in \mathrm{C}\text{, }&\left(j=\frac{1}{4}i\text{ and }a=2\right)\text{ or }\left(j=-\frac{1}{2}i\text{ and }a=-\frac{2\times 3}{3+3\sqrt{3}i}-\frac{\sqrt{3}i}{2}-\frac{1}{2}\right)\end{matrix}\right,
Megoldás a(z) a változóra
a=-i\sqrt{-b+4ij+\left(bj\right)^{2}-3}+ibj
a=i\left(\sqrt{-b+4ij+\left(bj\right)^{2}-3}+bj\right)
Megosztás
Átmásolva a vágólapra
ia^{2}-ib+2abj=3i+4j
A disztributivitás felhasználásával összeszorozzuk a következőket: a^{2}-b és i.
-ib+2abj=3i+4j-ia^{2}
Mindkét oldalból kivonjuk a következőt: ia^{2}.
2abj-ib=-ia^{2}+4j+3i
Átrendezzük a tagokat.
\left(2aj-i\right)b=-ia^{2}+4j+3i
Összevonunk minden tagot, amelyben szerepel b.
\left(2aj-i\right)b=3i+4j-ia^{2}
Az egyenlet kanonikus alakban van.
\frac{\left(2aj-i\right)b}{2aj-i}=\frac{3i+4j-ia^{2}}{2aj-i}
Mindkét oldalt elosztjuk ennyivel: -i+2aj.
b=\frac{3i+4j-ia^{2}}{2aj-i}
A(z) -i+2aj értékkel való osztás eltünteti a(z) -i+2aj értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}