Megoldás a(z) A változóra (complex solution)
\left\{\begin{matrix}\\A=0\text{, }&\text{unconditionally}\\A\in \mathrm{C}\text{, }&B=-\sqrt{C}D^{\frac{3}{2}}\text{ or }B=\sqrt{C}D^{\frac{3}{2}}\end{matrix}\right,
Megoldás a(z) B változóra (complex solution)
\left\{\begin{matrix}\\B=-\sqrt{C}D^{\frac{3}{2}}\text{; }B=\sqrt{C}D^{\frac{3}{2}}\text{, }&\text{unconditionally}\\B\in \mathrm{C}\text{, }&A=0\end{matrix}\right,
Megoldás a(z) A változóra
\left\{\begin{matrix}\\A=0\text{, }&\text{unconditionally}\\A\in \mathrm{R}\text{, }&\left(B=0\text{ and }C=0\text{ and }D=0\right)\text{ or }\left(C\geq 0\text{ and }D\geq 0\text{ and }|B|=\sqrt{CD^{3}}\right)\text{ or }\left(D\leq 0\text{ and }C\leq 0\text{ and }|B|=\sqrt{CD^{3}}\right)\end{matrix}\right,
Megoldás a(z) B változóra
\left\{\begin{matrix}B\in \mathrm{R}\text{, }&A=0\\B=-\sqrt{CD^{3}}\text{; }B=\sqrt{CD^{3}}\text{, }&A\neq 0\text{ and }D\leq 0\text{ and }C\leq 0\\B=-\sqrt{C}D^{\frac{3}{2}}\text{; }B=\sqrt{C}D^{\frac{3}{2}}\text{, }&A\neq 0\text{ and }C\geq 0\text{ and }D\geq 0\end{matrix}\right,
Megosztás
Átmásolva a vágólapra
A^{2}B^{2}=A^{2}CD^{3}
Kifejtjük a következőt: \left(AB\right)^{2}.
A^{2}B^{2}-A^{2}CD^{3}=0
Mindkét oldalból kivonjuk a következőt: A^{2}CD^{3}.
A^{2}B^{2}-CA^{2}D^{3}=0
Átrendezzük a tagokat.
\left(B^{2}-CD^{3}\right)A^{2}=0
Összevonunk minden tagot, amelyben szerepel A.
A^{2}=\frac{0}{B^{2}-CD^{3}}
A(z) B^{2}-CD^{3} értékkel való osztás eltünteti a(z) B^{2}-CD^{3} értékkel való szorzást.
A^{2}=0
0 elosztása a következővel: B^{2}-CD^{3}.
A=0 A=0
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
A=0
Megoldottuk az egyenletet. Azonosak a megoldások.
A^{2}B^{2}=A^{2}CD^{3}
Kifejtjük a következőt: \left(AB\right)^{2}.
A^{2}B^{2}-A^{2}CD^{3}=0
Mindkét oldalból kivonjuk a következőt: A^{2}CD^{3}.
A^{2}B^{2}-CA^{2}D^{3}=0
Átrendezzük a tagokat.
\left(B^{2}-CD^{3}\right)A^{2}=0
Összevonunk minden tagot, amelyben szerepel A.
A=\frac{0±\sqrt{0^{2}}}{2\left(B^{2}-CD^{3}\right)}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) B^{2}-CD^{3} értéket a-ba, a(z) 0 értéket b-be és a(z) 0 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
A=\frac{0±0}{2\left(B^{2}-CD^{3}\right)}
Négyzetgyököt vonunk a következőből: 0^{2}.
A=\frac{0}{2B^{2}-2CD^{3}}
Összeszorozzuk a következőket: 2 és B^{2}-CD^{3}.
A=0
0 elosztása a következővel: 2B^{2}-2D^{3}C.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}