Ugrás a tartalomra
Differenciálás y szerint
Tick mark Image
Kiértékelés
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

\frac{1}{4}\times \left(6y^{2}\right)^{\frac{1}{4}-1}\frac{\mathrm{d}}{\mathrm{d}y}(6y^{2})
Ha az F függvény az f\left(u\right) és az u=g\left(x\right) differenciálható függvények kompozíciója, azaz F\left(x\right)=f\left(g\left(x\right)\right), akkor F deriváltja az f függvény u szerinti deriváltjának és a g függvény x szerinti deriváltjának a szorzata, vagyis \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{1}{4}\times \left(6y^{2}\right)^{-\frac{3}{4}}\times 2\times 6y^{2-1}
Egy polinom deriváltja a tagok deriváltjainak összege. Bármely konstans tag deriváltja 0. ax^{n} deriváltja nax^{n-1}.
3y^{1}\times \left(6y^{2}\right)^{-\frac{3}{4}}
Egyszerűsítünk.
3y\times \left(6y^{2}\right)^{-\frac{3}{4}}
Minden t tagra, t^{1}=t.