( 2 x - 3 y ) d x - ( 2 y + 3 x ) d x = 0
Megoldás a(z) d változóra (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=-5y\text{ or }x=0\end{matrix}\right,
Megoldás a(z) d változóra
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=-5y\text{ or }x=0\end{matrix}\right,
Megoldás a(z) x változóra (complex solution)
\left\{\begin{matrix}\\x=-5y\text{; }x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right,
Megoldás a(z) x változóra
\left\{\begin{matrix}\\x=-5y\text{; }x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right,
Grafikon
Megosztás
Átmásolva a vágólapra
\left(2xd-3yd\right)x-\left(2y+3x\right)dx=0
A disztributivitás felhasználásával összeszorozzuk a következőket: 2x-3y és d.
2dx^{2}-3ydx-\left(2y+3x\right)dx=0
A disztributivitás felhasználásával összeszorozzuk a következőket: 2xd-3yd és x.
2dx^{2}-3ydx-\left(2yd+3xd\right)x=0
A disztributivitás felhasználásával összeszorozzuk a következőket: 2y+3x és d.
2dx^{2}-3ydx-\left(2ydx+3dx^{2}\right)=0
A disztributivitás felhasználásával összeszorozzuk a következőket: 2yd+3xd és x.
2dx^{2}-3ydx-2ydx-3dx^{2}=0
2ydx+3dx^{2} ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
2dx^{2}-5ydx-3dx^{2}=0
Összevonjuk a következőket: -3ydx és -2ydx. Az eredmény -5ydx.
-dx^{2}-5ydx=0
Összevonjuk a következőket: 2dx^{2} és -3dx^{2}. Az eredmény -dx^{2}.
\left(-x^{2}-5yx\right)d=0
Összevonunk minden tagot, amelyben szerepel d.
\left(-x^{2}-5xy\right)d=0
Az egyenlet kanonikus alakban van.
d=0
0 elosztása a következővel: -x^{2}-5yx.
\left(2xd-3yd\right)x-\left(2y+3x\right)dx=0
A disztributivitás felhasználásával összeszorozzuk a következőket: 2x-3y és d.
2dx^{2}-3ydx-\left(2y+3x\right)dx=0
A disztributivitás felhasználásával összeszorozzuk a következőket: 2xd-3yd és x.
2dx^{2}-3ydx-\left(2yd+3xd\right)x=0
A disztributivitás felhasználásával összeszorozzuk a következőket: 2y+3x és d.
2dx^{2}-3ydx-\left(2ydx+3dx^{2}\right)=0
A disztributivitás felhasználásával összeszorozzuk a következőket: 2yd+3xd és x.
2dx^{2}-3ydx-2ydx-3dx^{2}=0
2ydx+3dx^{2} ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
2dx^{2}-5ydx-3dx^{2}=0
Összevonjuk a következőket: -3ydx és -2ydx. Az eredmény -5ydx.
-dx^{2}-5ydx=0
Összevonjuk a következőket: 2dx^{2} és -3dx^{2}. Az eredmény -dx^{2}.
\left(-x^{2}-5yx\right)d=0
Összevonunk minden tagot, amelyben szerepel d.
\left(-x^{2}-5xy\right)d=0
Az egyenlet kanonikus alakban van.
d=0
0 elosztása a következővel: -x^{2}-5yx.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}