Kiértékelés
\left(g+h\right)\left(g+12h\right)
Zárójel felbontása
g^{2}+13gh+12h^{2}
Megosztás
Átmásolva a vágólapra
\frac{1}{2}g\times 2g+\frac{1}{2}g\times 2h+12hg+12h^{2}
Felhasználjuk a disztributivitást úgy, hogy a kifejezés (\frac{1}{2}g+6h) minden tagját megszorozzuk a másik kifejezés (2g+2h) minden tagjával.
\frac{1}{2}g^{2}\times 2+\frac{1}{2}g\times 2h+12hg+12h^{2}
Összeszorozzuk a következőket: g és g. Az eredmény g^{2}.
g^{2}+\frac{1}{2}g\times 2h+12hg+12h^{2}
Kiejtjük ezt a két értéket: 2 és 2.
g^{2}+gh+12hg+12h^{2}
Kiejtjük ezt a két értéket: 2 és 2.
g^{2}+13gh+12h^{2}
Összevonjuk a következőket: gh és 12hg. Az eredmény 13gh.
\frac{1}{2}g\times 2g+\frac{1}{2}g\times 2h+12hg+12h^{2}
Felhasználjuk a disztributivitást úgy, hogy a kifejezés (\frac{1}{2}g+6h) minden tagját megszorozzuk a másik kifejezés (2g+2h) minden tagjával.
\frac{1}{2}g^{2}\times 2+\frac{1}{2}g\times 2h+12hg+12h^{2}
Összeszorozzuk a következőket: g és g. Az eredmény g^{2}.
g^{2}+\frac{1}{2}g\times 2h+12hg+12h^{2}
Kiejtjük ezt a két értéket: 2 és 2.
g^{2}+gh+12hg+12h^{2}
Kiejtjük ezt a két értéket: 2 és 2.
g^{2}+13gh+12h^{2}
Összevonjuk a következőket: gh és 12hg. Az eredmény 13gh.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}