Ugrás a tartalomra
Szorzattá alakítás
Tick mark Image
Kiértékelés
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

a+b=-6 ab=1\times 9=9
Csoportosítással tényezőkre bontjuk a kifejezést úgy, hogy először átírjuk p^{2}+ap+bp+9 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
-1,-9 -3,-3
Mivel ab pozitív, a és b azonos aláírására. Mivel a a+b negatív, a és b negatív. Listát készítünk minden olyan egész párról, amelynek szorzata 9.
-1-9=-10 -3-3=-6
Kiszámítjuk az egyes párok összegét.
a=-3 b=-3
A megoldás az a pár, amelynek összege -6.
\left(p^{2}-3p\right)+\left(-3p+9\right)
Átírjuk az értéket (p^{2}-6p+9) \left(p^{2}-3p\right)+\left(-3p+9\right) alakban.
p\left(p-3\right)-3\left(p-3\right)
A p a második csoportban lévő első és -3 faktort.
\left(p-3\right)\left(p-3\right)
A disztributivitási tulajdonság használatával emelje ki a(z) p-3 általános kifejezést a zárójelből.
\left(p-3\right)^{2}
Átírjuk kéttagú kifejezés négyzetére.
factor(p^{2}-6p+9)
Ez a háromtagú kifejezés teljes négyzet alakban van, esetleg meg van szorozva egy közös tényezővel. A teljes négyzet szorzattá alakításához ki kell számolni az első és az utolsó tag négyzetgyökét.
\sqrt{9}=3
Négyzetgyököt vonunk az utolsó, 9 tagból.
\left(p-3\right)^{2}
A trinom teljes négyzet annak a binomnak a négyzete, amely az első és az utolsó tag négyzetgyökének összege vagy különbsége, ahol az előjelet a trinom középső tagjának előjele adja meg.
p^{2}-6p+9=0
A másodfokú polinomiális kifejezés ezzel a transzformációval faktorálható: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). A másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása x_{1} és x_{2}.
p=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
p=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Négyzetre emeljük a következőt: -6.
p=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Összeszorozzuk a következőket: -4 és 9.
p=\frac{-\left(-6\right)±\sqrt{0}}{2}
Összeadjuk a következőket: 36 és -36.
p=\frac{-\left(-6\right)±0}{2}
Négyzetgyököt vonunk a következőből: 0.
p=\frac{6±0}{2}
-6 ellentettje 6.
p^{2}-6p+9=\left(p-3\right)\left(p-3\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) 3 értéket x_{1} helyére, a(z) 3 értéket pedig x_{2} helyére.