Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

\left(x^{2}-6x+9\right)\left(10-17x\right)^{2}=0
Binomiális tétel (\left(a-b\right)^{2}=a^{2}-2ab+b^{2}) használatával kibontjuk a képletet (\left(x-3\right)^{2}).
\left(x^{2}-6x+9\right)\left(100-340x+289x^{2}\right)=0
Binomiális tétel (\left(a-b\right)^{2}=a^{2}-2ab+b^{2}) használatával kibontjuk a képletet (\left(10-17x\right)^{2}).
4741x^{2}-2074x^{3}+289x^{4}-3660x+900=0
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x^{2}-6x+9 és 100-340x+289x^{2}), majd összevonjuk az egynemű tagokat.
289x^{4}-2074x^{3}+4741x^{2}-3660x+900=0
Átrendezzük az egyenletet, kanonikus formára hozva azt. A tagokat sorba rendezzük a legnagyobb kitevőjűtől a legkisebb kitevőjűig.
±\frac{900}{289},±\frac{900}{17},±900,±\frac{450}{289},±\frac{450}{17},±450,±\frac{300}{289},±\frac{300}{17},±300,±\frac{225}{289},±\frac{225}{17},±225,±\frac{180}{289},±\frac{180}{17},±180,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{90}{289},±\frac{90}{17},±90,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{45}{289},±\frac{45}{17},±45,±\frac{36}{289},±\frac{36}{17},±36,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{18}{289},±\frac{18}{17},±18,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{9}{289},±\frac{9}{17},±9,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
A Rolle-féle gyöktétel alapján, a polinom összes racionális gyöke \frac{p}{q} formájú, ahol p osztója a(z) 900 állandónak, és q osztója a(z) 289 főegyütthatónak. Az összes lehetséges \frac{p}{q} listázása.
x=3
Keresünk egy ilyen gyököt úgy, hogy az összes egész értékkel próbálkozunk, az abszolút érték szerinti legkisebbel kezdve. Ha nincs találat egész gyökökre, törtekkel próbálkozunk tovább.
289x^{3}-1207x^{2}+1120x-300=0
A faktorizációs tétel alapján a(z) x-k minden k gyök esetén osztója a polinomnak. Elosztjuk a(z) 289x^{4}-2074x^{3}+4741x^{2}-3660x+900 értéket a(z) x-3 értékkel. Az eredmény 289x^{3}-1207x^{2}+1120x-300. Megoldjuk az egyenletet úgy, hogy 0 legyen az eredménye.
±\frac{300}{289},±\frac{300}{17},±300,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
A Rolle-féle gyöktétel alapján, a polinom összes racionális gyöke \frac{p}{q} formájú, ahol p osztója a(z) -300 állandónak, és q osztója a(z) 289 főegyütthatónak. Az összes lehetséges \frac{p}{q} listázása.
x=3
Keresünk egy ilyen gyököt úgy, hogy az összes egész értékkel próbálkozunk, az abszolút érték szerinti legkisebbel kezdve. Ha nincs találat egész gyökökre, törtekkel próbálkozunk tovább.
289x^{2}-340x+100=0
A faktorizációs tétel alapján a(z) x-k minden k gyök esetén osztója a polinomnak. Elosztjuk a(z) 289x^{3}-1207x^{2}+1120x-300 értéket a(z) x-3 értékkel. Az eredmény 289x^{2}-340x+100. Megoldjuk az egyenletet úgy, hogy 0 legyen az eredménye.
x=\frac{-\left(-340\right)±\sqrt{\left(-340\right)^{2}-4\times 289\times 100}}{2\times 289}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Behelyettesítjük a(z) 289 értéket a-ba, a(z) -340 értéket b-be és a(z) 100 értéket c-be a megoldóképletben.
x=\frac{340±0}{578}
Elvégezzük a számításokat.
x=\frac{10}{17}
Azonosak a megoldások.
x=3 x=\frac{10}{17}
Listát készítünk az összes lehetséges megoldásról.