Megoldás a(z) g változóra (complex solution)
\left\{\begin{matrix}g=-\frac{x\epsilon -\epsilon +9}{x}\text{, }&x\neq 0\\g\in \mathrm{C}\text{, }&x=0\text{ and }\epsilon =9\end{matrix}\right,
Megoldás a(z) x változóra (complex solution)
\left\{\begin{matrix}x=\frac{\epsilon -9}{g+\epsilon }\text{, }&\epsilon \neq -g\\x\in \mathrm{C}\text{, }&\epsilon =9\text{ and }g=-9\end{matrix}\right,
Megoldás a(z) g változóra
\left\{\begin{matrix}g=-\frac{x\epsilon -\epsilon +9}{x}\text{, }&x\neq 0\\g\in \mathrm{R}\text{, }&x=0\text{ and }\epsilon =9\end{matrix}\right,
Megoldás a(z) x változóra
\left\{\begin{matrix}x=\frac{\epsilon -9}{g+\epsilon }\text{, }&\epsilon \neq -g\\x\in \mathrm{R}\text{, }&\epsilon =9\text{ and }g=-9\end{matrix}\right,
Grafikon
Megosztás
Átmásolva a vágólapra
9+xg=\epsilon -x\epsilon
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
xg=\epsilon -x\epsilon -9
Mindkét oldalból kivonjuk a következőt: 9.
xg=-x\epsilon +\epsilon -9
Az egyenlet kanonikus alakban van.
\frac{xg}{x}=\frac{-x\epsilon +\epsilon -9}{x}
Mindkét oldalt elosztjuk ennyivel: x.
g=\frac{-x\epsilon +\epsilon -9}{x}
A(z) x értékkel való osztás eltünteti a(z) x értékkel való szorzást.
\epsilon -x\epsilon -xg=9
Mindkét oldalból kivonjuk a következőt: xg.
-x\epsilon -xg=9-\epsilon
Mindkét oldalból kivonjuk a következőt: \epsilon .
\left(-\epsilon -g\right)x=9-\epsilon
Összevonunk minden tagot, amelyben szerepel x.
\left(-g-\epsilon \right)x=9-\epsilon
Az egyenlet kanonikus alakban van.
\frac{\left(-g-\epsilon \right)x}{-g-\epsilon }=\frac{9-\epsilon }{-g-\epsilon }
Mindkét oldalt elosztjuk ennyivel: -\epsilon -g.
x=\frac{9-\epsilon }{-g-\epsilon }
A(z) -\epsilon -g értékkel való osztás eltünteti a(z) -\epsilon -g értékkel való szorzást.
x=-\frac{9-\epsilon }{g+\epsilon }
-\epsilon +9 elosztása a következővel: -\epsilon -g.
9+xg=\epsilon -x\epsilon
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
xg=\epsilon -x\epsilon -9
Mindkét oldalból kivonjuk a következőt: 9.
xg=-x\epsilon +\epsilon -9
Az egyenlet kanonikus alakban van.
\frac{xg}{x}=\frac{-x\epsilon +\epsilon -9}{x}
Mindkét oldalt elosztjuk ennyivel: x.
g=\frac{-x\epsilon +\epsilon -9}{x}
A(z) x értékkel való osztás eltünteti a(z) x értékkel való szorzást.
\epsilon -x\epsilon -xg=9
Mindkét oldalból kivonjuk a következőt: xg.
-x\epsilon -xg=9-\epsilon
Mindkét oldalból kivonjuk a következőt: \epsilon .
\left(-\epsilon -g\right)x=9-\epsilon
Összevonunk minden tagot, amelyben szerepel x.
\left(-g-\epsilon \right)x=9-\epsilon
Az egyenlet kanonikus alakban van.
\frac{\left(-g-\epsilon \right)x}{-g-\epsilon }=\frac{9-\epsilon }{-g-\epsilon }
Mindkét oldalt elosztjuk ennyivel: -\epsilon -g.
x=\frac{9-\epsilon }{-g-\epsilon }
A(z) -\epsilon -g értékkel való osztás eltünteti a(z) -\epsilon -g értékkel való szorzást.
x=-\frac{9-\epsilon }{g+\epsilon }
-\epsilon +9 elosztása a következővel: -\epsilon -g.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}