Megoldás a(z) x változóra
x=\frac{-\sqrt{5513}y+67y+431-5\sqrt{5513}}{32}
Megoldás a(z) y változóra
y=\frac{-\sqrt{5513}x-67x+3\sqrt{5513}+41}{32}
Grafikon
Megosztás
Átmásolva a vágólapra
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\left(-\sqrt{149}\right)\left(6x-y-23\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: \sqrt{37} és 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x-\left(-\sqrt{149}\right)y-23\left(-\sqrt{149}\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: -\sqrt{149} és 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y-23\left(-\sqrt{149}\right)
Összeszorozzuk a következőket: -1 és -1. Az eredmény 1.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y+23\sqrt{149}
Összeszorozzuk a következőket: -23 és -1. Az eredmény 23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\left(-\sqrt{149}\right)x=\sqrt{149}y+23\sqrt{149}
Mindkét oldalból kivonjuk a következőt: 6\left(-\sqrt{149}\right)x.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\left(-1\right)\sqrt{149}x=\sqrt{149}y+23\sqrt{149}
Összeszorozzuk a következőket: -1 és 6. Az eredmény -6.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}
Összeszorozzuk a következőket: -6 és -1. Az eredmény 6.
10\sqrt{37}x+5\sqrt{37}+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y
Mindkét oldalból kivonjuk a következőt: 7\sqrt{37}y.
10\sqrt{37}x+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Mindkét oldalból kivonjuk a következőt: 5\sqrt{37}.
\left(10\sqrt{37}+6\sqrt{149}\right)x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Összevonunk minden tagot, amelyben szerepel x.
\left(6\sqrt{149}+10\sqrt{37}\right)x=\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}
Az egyenlet kanonikus alakban van.
\frac{\left(6\sqrt{149}+10\sqrt{37}\right)x}{6\sqrt{149}+10\sqrt{37}}=\frac{\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}}{6\sqrt{149}+10\sqrt{37}}
Mindkét oldalt elosztjuk ennyivel: 10\sqrt{37}+6\sqrt{149}.
x=\frac{\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}}{6\sqrt{149}+10\sqrt{37}}
A(z) 10\sqrt{37}+6\sqrt{149} értékkel való osztás eltünteti a(z) 10\sqrt{37}+6\sqrt{149} értékkel való szorzást.
x=\frac{\frac{3\sqrt{149}-5\sqrt{37}}{416}\left(\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}\right)}{2}
\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37} elosztása a következővel: 10\sqrt{37}+6\sqrt{149}.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\left(-\sqrt{149}\right)\left(6x-y-23\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: \sqrt{37} és 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x-\left(-\sqrt{149}\right)y-23\left(-\sqrt{149}\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: -\sqrt{149} és 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y-23\left(-\sqrt{149}\right)
Összeszorozzuk a következőket: -1 és -1. Az eredmény 1.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y+23\sqrt{149}
Összeszorozzuk a következőket: -23 és -1. Az eredmény 23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=6\left(-\sqrt{149}\right)x+23\sqrt{149}
Mindkét oldalból kivonjuk a következőt: \sqrt{149}y.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}
Összeszorozzuk a következőket: 6 és -1. Az eredmény -6.
7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x
Mindkét oldalból kivonjuk a következőt: 10\sqrt{37}x.
7\sqrt{37}y-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Mindkét oldalból kivonjuk a következőt: 5\sqrt{37}.
\left(7\sqrt{37}-\sqrt{149}\right)y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Összevonunk minden tagot, amelyben szerepel y.
\left(7\sqrt{37}-\sqrt{149}\right)y=-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}
Az egyenlet kanonikus alakban van.
\frac{\left(7\sqrt{37}-\sqrt{149}\right)y}{7\sqrt{37}-\sqrt{149}}=\frac{-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}}{7\sqrt{37}-\sqrt{149}}
Mindkét oldalt elosztjuk ennyivel: 7\sqrt{37}-\sqrt{149}.
y=\frac{-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}}{7\sqrt{37}-\sqrt{149}}
A(z) 7\sqrt{37}-\sqrt{149} értékkel való osztás eltünteti a(z) 7\sqrt{37}-\sqrt{149} értékkel való szorzást.
y=\frac{\sqrt{149}+7\sqrt{37}}{1664}\left(-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}\right)
-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37} elosztása a következővel: 7\sqrt{37}-\sqrt{149}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}