Megoldás a(z) x változóra (complex solution)
\left\{\begin{matrix}\\x=\frac{3\sqrt{2}\left(a+2\right)^{2}}{4}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&a=4\end{matrix}\right,
Megoldás a(z) x változóra
\left\{\begin{matrix}\\x=\frac{3\sqrt{2}\left(a+2\right)^{2}}{4}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&a=4\end{matrix}\right,
Megoldás a(z) a változóra (complex solution)
a=\frac{2^{\frac{3}{4}}\sqrt{3x}}{3}-2
a=4
a=-\frac{2^{\frac{3}{4}}\sqrt{3x}}{3}-2
Grafikon
Megosztás
Átmásolva a vágólapra
4\sqrt{2}x-\sqrt{2}xa=\left(3a+6\right)\left(a+4-\frac{1}{2}a^{2}\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: \sqrt{2}x és 4-a.
4\sqrt{2}x-\sqrt{2}xa=18a-\frac{3}{2}a^{3}+24
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (3a+6 és a+4-\frac{1}{2}a^{2}), majd összevonjuk az egynemű tagokat.
\left(4\sqrt{2}-\sqrt{2}a\right)x=18a-\frac{3}{2}a^{3}+24
Összevonunk minden tagot, amelyben szerepel x.
\left(-\sqrt{2}a+4\sqrt{2}\right)x=-\frac{3a^{3}}{2}+18a+24
Az egyenlet kanonikus alakban van.
\frac{\left(-\sqrt{2}a+4\sqrt{2}\right)x}{-\sqrt{2}a+4\sqrt{2}}=\frac{-\frac{3a^{3}}{2}+18a+24}{-\sqrt{2}a+4\sqrt{2}}
Mindkét oldalt elosztjuk ennyivel: 4\sqrt{2}-\sqrt{2}a.
x=\frac{-\frac{3a^{3}}{2}+18a+24}{-\sqrt{2}a+4\sqrt{2}}
A(z) 4\sqrt{2}-\sqrt{2}a értékkel való osztás eltünteti a(z) 4\sqrt{2}-\sqrt{2}a értékkel való szorzást.
x=\frac{3\sqrt{2}\left(a+2\right)^{2}}{4}
18a-\frac{3a^{3}}{2}+24 elosztása a következővel: 4\sqrt{2}-\sqrt{2}a.
4\sqrt{2}x-\sqrt{2}xa=\left(3a+6\right)\left(a+4-\frac{1}{2}a^{2}\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: \sqrt{2}x és 4-a.
4\sqrt{2}x-\sqrt{2}xa=18a-\frac{3}{2}a^{3}+24
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (3a+6 és a+4-\frac{1}{2}a^{2}), majd összevonjuk az egynemű tagokat.
\left(4\sqrt{2}-\sqrt{2}a\right)x=18a-\frac{3}{2}a^{3}+24
Összevonunk minden tagot, amelyben szerepel x.
\left(-\sqrt{2}a+4\sqrt{2}\right)x=-\frac{3a^{3}}{2}+18a+24
Az egyenlet kanonikus alakban van.
\frac{\left(-\sqrt{2}a+4\sqrt{2}\right)x}{-\sqrt{2}a+4\sqrt{2}}=\frac{-\frac{3a^{3}}{2}+18a+24}{-\sqrt{2}a+4\sqrt{2}}
Mindkét oldalt elosztjuk ennyivel: 4\sqrt{2}-\sqrt{2}a.
x=\frac{-\frac{3a^{3}}{2}+18a+24}{-\sqrt{2}a+4\sqrt{2}}
A(z) 4\sqrt{2}-\sqrt{2}a értékkel való osztás eltünteti a(z) 4\sqrt{2}-\sqrt{2}a értékkel való szorzást.
x=\frac{3\sqrt{2}\left(a+2\right)^{2}}{4}
18a-\frac{3a^{3}}{2}+24 elosztása a következővel: 4\sqrt{2}-\sqrt{2}a.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}