Kiértékelés
\text{Indeterminate}
Szorzattá alakítás
\text{Indeterminate}
Megosztás
Átmásolva a vágólapra
\sqrt{\frac{2\times 4}{7}}
Kiejtjük ezt az értéket a számlálóban és a nevezőben is: 0.
\sqrt{\frac{8}{7}}
Összeszorozzuk a következőket: 2 és 4. Az eredmény 8.
\frac{\sqrt{8}}{\sqrt{7}}
Átalakítjuk az osztás (\sqrt{\frac{8}{7}}) négyzetgyökét e négyzetgyökök hányadosává: \frac{\sqrt{8}}{\sqrt{7}}.
\frac{2\sqrt{2}}{\sqrt{7}}
Szorzattá alakítjuk a(z) 8=2^{2}\times 2 kifejezést. Átalakítjuk a szorzat (\sqrt{2^{2}\times 2}) négyzetgyökét e négyzetgyökök szorzatává: \sqrt{2^{2}}\sqrt{2}. Négyzetgyököt vonunk a következőből: 2^{2}.
\frac{2\sqrt{2}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Gyöktelenítjük a tört (\frac{2\sqrt{2}}{\sqrt{7}}) nevezőjét úgy, hogy megszorozzuk a számlálót és a nevezőt ennyivel: \sqrt{7}.
\frac{2\sqrt{2}\sqrt{7}}{7}
\sqrt{7} négyzete 7.
\frac{2\sqrt{14}}{7}
\sqrt{2} és \sqrt{7} megszorozzuk a négyzetgyökér alatti számokat.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}