\left( \begin{array} { r r r } { 1 } & { - 1 } & { 3 } \\ { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 1 } \end{array} \right)
Determináns kiszámítása
0
Kiértékelés
\left(\begin{matrix}1&-1&3\\0&0&0\\0&0&1\end{matrix}\right)
Megosztás
Átmásolva a vágólapra
det(\left(\begin{matrix}1&-1&3\\0&0&0\\0&0&1\end{matrix}\right))
Kiszámoljuk a mátrix determinánsát az átlók segítségével.
\left(\begin{matrix}1&-1&3&1&-1\\0&0&0&0&0\\0&0&1&0&0\end{matrix}\right)
Kibővítjük az eredeti mátrixot úgy, hogy az első két oszlopot a negyedik és az ötödik oszlopba másoljuk.
\text{true}
A bal felső elemtől indulva lefelé összeszorozzuk az egyes átlók elemeit, és a kapott szorzatokat összeadjuk.
0
A főátlóval párhuzamos átlók szorzatainak összegéből kivonjuk a mellékátlóval párhuzamos átlók szorzatainak összegét.
det(\left(\begin{matrix}1&-1&3\\0&0&0\\0&0&1\end{matrix}\right))
Kiszámoljuk a mátrix determinánsát az (előjeles) aldeterminánsok szerinti kifejtéssel.
det(\left(\begin{matrix}0&0\\0&1\end{matrix}\right))-\left(-det(\left(\begin{matrix}0&0\\0&1\end{matrix}\right))\right)+3det(\left(\begin{matrix}0&0\\0&0\end{matrix}\right))
Az aldeterminánsok szerinti kifejtéshez megszorozzuk az első sor minden elemét a hozzá tartozó aldeterminánssal – amely az adott elemet tartalmazó sor és oszlop elhagyásával kapott 2\times 2-es mátrix determinánsa – majd a kapott értéket megszorozzuk az elem pozíciója szerinti előjellel.
0
A 2\times 2 mátrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right) a determináns ad-bc.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}