Kiértékelés
0
Megosztás
Átmásolva a vágólapra
\int _{0}^{2}\left(-36x+0x^{2}\right)\times 0\times 1x\mathrm{d}x
Összeszorozzuk a következőket: 0 és 5. Az eredmény 0.
\int _{0}^{2}\left(-36x+0\right)\times 0\times 1x\mathrm{d}x
Egy adott számot nullával szorozva nullát kapunk.
\int _{0}^{2}-36x\times 0x\mathrm{d}x
Egy adott számhoz nullát adva ugyanazt a számot kapjuk.
\int _{0}^{2}0x\times 1x\mathrm{d}x
Összeszorozzuk a következőket: -36 és 0. Az eredmény 0.
\int _{0}^{2}0xx\mathrm{d}x
Összeszorozzuk a következőket: 0 és 1. Az eredmény 0.
\int _{0}^{2}0x^{2}\mathrm{d}x
Összeszorozzuk a következőket: x és x. Az eredmény x^{2}.
\int _{0}^{2}0\mathrm{d}x
Egy adott számot nullával szorozva nullát kapunk.
\int 0\mathrm{d}x
Először a határozatlan integrál kiértékelése
0
A 0 az általános integrálások táblájában használt táblázat használatával megkeresheti a \int a\mathrm{d}x=ax.
0+0
A határozott integrál értéke a kifejezés primitív függvényének helyettesítési értéke az integrálás felső határán mínusz a primitív függvény helyettesítési értéke az integrálás alsó határán.
0
Egyszerűsítünk.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}