Ugrás a tartalomra
Kiértékelés
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\int 3x^{3}-x^{2}+2x-4\mathrm{d}x
Először a határozatlan integrál kiértékelése
\int 3x^{3}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -4\mathrm{d}x
Az összeg integrálása tagonként
3\int x^{3}\mathrm{d}x-\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -4\mathrm{d}x
Az állandó kiemelése minden egyes tagban
\frac{3x^{4}}{4}-\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -4\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{3}\mathrm{d}x \frac{x^{4}}{4}. Összeszorozzuk a következőket: 3 és \frac{x^{4}}{4}.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+2\int x\mathrm{d}x+\int -4\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Összeszorozzuk a következőket: -1 és \frac{x^{3}}{3}.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+x^{2}+\int -4\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x\mathrm{d}x \frac{x^{2}}{2}. Összeszorozzuk a következőket: 2 és \frac{x^{2}}{2}.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+x^{2}-4x
A -4 az általános integrálások táblájában használt táblázat használatával megkeresheti a \int a\mathrm{d}x=ax.
\frac{3}{4}\times 1^{4}-\frac{1^{3}}{3}+1^{2}-4-\left(\frac{3}{4}\times 0^{4}-\frac{0^{3}}{3}+0^{2}-4\times 0\right)
A határozott integrál értéke a kifejezés primitív függvényének helyettesítési értéke az integrálás felső határán mínusz a primitív függvény helyettesítési értéke az integrálás alsó határán.
-\frac{31}{12}
Egyszerűsítünk.