Ugrás a tartalomra
Kiértékelés
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\int _{-2}^{5}64x^{3}-144x^{2}+108x-27\mathrm{d}x
Binomiális tétel (\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}) használatával kibontjuk a képletet (\left(4x-3\right)^{3}).
\int 64x^{3}-144x^{2}+108x-27\mathrm{d}x
Először a határozatlan integrál kiértékelése
\int 64x^{3}\mathrm{d}x+\int -144x^{2}\mathrm{d}x+\int 108x\mathrm{d}x+\int -27\mathrm{d}x
Az összeg integrálása tagonként
64\int x^{3}\mathrm{d}x-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Az állandó kiemelése minden egyes tagban
16x^{4}-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{3}\mathrm{d}x \frac{x^{4}}{4}. Összeszorozzuk a következőket: 64 és \frac{x^{4}}{4}.
16x^{4}-48x^{3}+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Összeszorozzuk a következőket: -144 és \frac{x^{3}}{3}.
16x^{4}-48x^{3}+54x^{2}+\int -27\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x\mathrm{d}x \frac{x^{2}}{2}. Összeszorozzuk a következőket: 108 és \frac{x^{2}}{2}.
16x^{4}-48x^{3}+54x^{2}-27x
A -27 az általános integrálások táblájában használt táblázat használatával megkeresheti a \int a\mathrm{d}x=ax.
16\times 5^{4}-48\times 5^{3}+54\times 5^{2}-27\times 5-\left(16\left(-2\right)^{4}-48\left(-2\right)^{3}+54\left(-2\right)^{2}-27\left(-2\right)\right)
A határozott integrál értéke a kifejezés primitív függvényének helyettesítési értéke az integrálás felső határán mínusz a primitív függvény helyettesítési értéke az integrálás alsó határán.
4305
Egyszerűsítünk.