Ugrás a tartalomra
Kiértékelés
Tick mark Image
Differenciálás x szerint
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\int 2x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Binomiális tétel (\left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}) használatával kibontjuk a képletet (\left(x^{2}+1\right)^{3}).
\int 2x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Hatvány hatványra emeléséhez összeszorozzuk a kitevőket. 2 és 3 szorzata 6.
\int 2x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
Hatvány hatványra emeléséhez összeszorozzuk a kitevőket. 2 és 2 szorzata 4.
\int 2x^{7}+6x^{5}+6x^{3}+2x\mathrm{d}x
A disztributivitás felhasználásával összeszorozzuk a következőket: 2x és x^{6}+3x^{4}+3x^{2}+1.
\int 2x^{7}\mathrm{d}x+\int 6x^{5}\mathrm{d}x+\int 6x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
Az összeg integrálása tagonként
2\int x^{7}\mathrm{d}x+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Az állandó kiemelése minden egyes tagban
\frac{x^{8}}{4}+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{7}\mathrm{d}x \frac{x^{8}}{8}. Összeszorozzuk a következőket: 2 és \frac{x^{8}}{8}.
\frac{x^{8}}{4}+x^{6}+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{5}\mathrm{d}x \frac{x^{6}}{6}. Összeszorozzuk a következőket: 6 és \frac{x^{6}}{6}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+2\int x\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{3}\mathrm{d}x \frac{x^{4}}{4}. Összeszorozzuk a következőket: 6 és \frac{x^{4}}{4}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x\mathrm{d}x \frac{x^{2}}{2}. Összeszorozzuk a következőket: 2 és \frac{x^{2}}{2}.
x^{2}+\frac{3x^{4}}{2}+x^{6}+\frac{x^{8}}{4}+С
Ha F\left(x\right) egy f\left(x\right), akkor a f\left(x\right) összes antiderivatives készlete F\left(x\right)+C. Ezért adja hozzá az integráció állandót C\in \mathrm{R} az eredménybe.