Ugrás a tartalomra
Kiértékelés
Tick mark Image
Differenciálás y szerint
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\int x^{2}+y^{2}\mathrm{d}x
Először a határozatlan integrál kiértékelése
\int x^{2}\mathrm{d}x+\int y^{2}\mathrm{d}x
Az összeg integrálása tagonként
\frac{x^{3}}{3}+\int y^{2}\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{2}\mathrm{d}x \frac{x^{3}}{3}.
\frac{x^{3}}{3}+y^{2}x
A y^{2} az általános integrálások táblájában használt táblázat használatával megkeresheti a \int a\mathrm{d}x=ax.
\frac{R_{2}^{3}}{3}+y^{2}R_{2}-\left(\frac{R_{1}^{3}}{3}+y^{2}R_{1}\right)
A határozott integrál értéke a kifejezés primitív függvényének helyettesítési értéke az integrálás felső határán mínusz a primitív függvény helyettesítési értéke az integrálás alsó határán.
\frac{\left(-R_{1}+R_{2}\right)\left(3y^{2}+R_{1}^{2}+R_{1}R_{2}+R_{2}^{2}\right)}{3}
Egyszerűsítünk.