Kiértékelés
\frac{1943795}{69}\approx 28170,942028986
Megosztás
Átmásolva a vágólapra
\int _{2}^{7}\left(4112x-\left(-\left(x-2\right)\left(x-2\right)\right)\right)\times \frac{7}{23}\mathrm{d}x
Kiejtjük ezt a két értéket: 2 és 2.
\int _{2}^{7}\left(4112x-\left(-\left(x-2\right)x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
A disztributivitás felhasználásával összeszorozzuk a következőket: -\left(x-2\right) és x-2.
\int _{2}^{7}\left(4112x-\left(\left(-x+2\right)x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
A disztributivitás felhasználásával összeszorozzuk a következőket: -1 és x-2.
\int _{2}^{7}\left(4112x-\left(-x^{2}+2x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
A disztributivitás felhasználásával összeszorozzuk a következőket: -x+2 és x.
\int _{2}^{7}\left(4112x-\left(-x^{2}+4x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Összevonjuk a következőket: 2x és 2x. Az eredmény 4x.
\int _{2}^{7}\left(4112x-\left(-x^{2}\right)-4x-\left(-4\right)\right)\times \frac{7}{23}\mathrm{d}x
-x^{2}+4x-4 ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
\int _{2}^{7}\left(4112x+x^{2}-4x-\left(-4\right)\right)\times \frac{7}{23}\mathrm{d}x
-x^{2} ellentettje x^{2}.
\int _{2}^{7}\left(4112x+x^{2}-4x+4\right)\times \frac{7}{23}\mathrm{d}x
-4 ellentettje 4.
\int _{2}^{7}\left(4108x+x^{2}+4\right)\times \frac{7}{23}\mathrm{d}x
Összevonjuk a következőket: 4112x és -4x. Az eredmény 4108x.
\int _{2}^{7}4108x\times \frac{7}{23}+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
A disztributivitás felhasználásával összeszorozzuk a következőket: 4108x+x^{2}+4 és \frac{7}{23}.
\int _{2}^{7}\frac{4108\times 7}{23}x+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
Kifejezzük a hányadost (4108\times \frac{7}{23}) egyetlen törtként.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
Összeszorozzuk a következőket: 4108 és 7. Az eredmény 28756.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+\frac{4\times 7}{23}\mathrm{d}x
Kifejezzük a hányadost (4\times \frac{7}{23}) egyetlen törtként.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+\frac{28}{23}\mathrm{d}x
Összeszorozzuk a következőket: 4 és 7. Az eredmény 28.
\int \frac{28756x+7x^{2}+28}{23}\mathrm{d}x
Először a határozatlan integrál kiértékelése
\int \frac{28756x}{23}\mathrm{d}x+\int \frac{7x^{2}}{23}\mathrm{d}x+\int \frac{28}{23}\mathrm{d}x
Az összeg integrálása tagonként
\frac{28756\int x\mathrm{d}x}{23}+\frac{7\int x^{2}\mathrm{d}x}{23}+\int \frac{28}{23}\mathrm{d}x
Az állandó kiemelése minden egyes tagban
\frac{14378x^{2}}{23}+\frac{7\int x^{2}\mathrm{d}x}{23}+\int \frac{28}{23}\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x\mathrm{d}x \frac{x^{2}}{2}. Összeszorozzuk a következőket: \frac{28756}{23} és \frac{x^{2}}{2}.
\frac{14378x^{2}}{23}+\frac{7x^{3}}{69}+\int \frac{28}{23}\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Összeszorozzuk a következőket: \frac{7}{23} és \frac{x^{3}}{3}.
\frac{14378x^{2}}{23}+\frac{7x^{3}}{69}+\frac{28x}{23}
A \frac{28}{23} az általános integrálások táblájában használt táblázat használatával megkeresheti a \int a\mathrm{d}x=ax.
\frac{14378}{23}\times 7^{2}+\frac{7}{69}\times 7^{3}+\frac{28}{23}\times 7-\left(\frac{14378}{23}\times 2^{2}+\frac{7}{69}\times 2^{3}+\frac{28}{23}\times 2\right)
A határozott integrál értéke a kifejezés primitív függvényének helyettesítési értéke az integrálás felső határán mínusz a primitív függvény helyettesítési értéke az integrálás alsó határán.
\frac{1943795}{69}
Egyszerűsítünk.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}