Kiértékelés
10\left(\sqrt{3}-\sqrt{2}\right)\approx 3,178372452
Megosztás
Átmásolva a vágólapra
\int \frac{5}{\sqrt{x}}\mathrm{d}x
Először a határozatlan integrál kiértékelése
5\int \frac{1}{\sqrt{x}}\mathrm{d}x
Az állandó kiemelése a(z) \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x használatával
10\sqrt{x}
Átírjuk az értéket (\frac{1}{\sqrt{x}}) x^{-\frac{1}{2}} alakban. Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{-\frac{1}{2}}\mathrm{d}x \frac{x^{\frac{1}{2}}}{\frac{1}{2}}. Egyszerűsítés és a hatványkitevős formátum gyökössé alakítása
10\times 3^{\frac{1}{2}}-10\times 2^{\frac{1}{2}}
A határozott integrál értéke a kifejezés primitív függvényének helyettesítési értéke az integrálás felső határán mínusz a primitív függvény helyettesítési értéke az integrálás alsó határán.
10\sqrt{3}-10\sqrt{2}
Egyszerűsítünk.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}