Ugrás a tartalomra
Kiértékelés
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\int _{0}^{1}x^{2}-2x+1\mathrm{d}x
Binomiális tétel (\left(a-b\right)^{2}=a^{2}-2ab+b^{2}) használatával kibontjuk a képletet (\left(x-1\right)^{2}).
\int x^{2}-2x+1\mathrm{d}x
Először a határozatlan integrál kiértékelése
\int x^{2}\mathrm{d}x+\int -2x\mathrm{d}x+\int 1\mathrm{d}x
Az összeg integrálása tagonként
\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x+\int 1\mathrm{d}x
Az állandó kiemelése minden egyes tagban
\frac{x^{3}}{3}-2\int x\mathrm{d}x+\int 1\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{2}\mathrm{d}x \frac{x^{3}}{3}.
\frac{x^{3}}{3}-x^{2}+\int 1\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x\mathrm{d}x \frac{x^{2}}{2}. Összeszorozzuk a következőket: -2 és \frac{x^{2}}{2}.
\frac{x^{3}}{3}-x^{2}+x
A 1 az általános integrálások táblájában használt táblázat használatával megkeresheti a \int a\mathrm{d}x=ax.
\frac{1^{3}}{3}-1^{2}+1-\left(\frac{0^{3}}{3}-0^{2}+0\right)
A határozott integrál értéke a kifejezés primitív függvényének helyettesítési értéke az integrálás felső határán mínusz a primitív függvény helyettesítési értéke az integrálás alsó határán.
\frac{1}{3}
Egyszerűsítünk.