Ugrás a tartalomra
Kiértékelés
Tick mark Image
Differenciálás x szerint
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\int \sqrt{x}\mathrm{d}x+\int x^{\frac{4}{3}}\mathrm{d}x+\int 3x^{\frac{3}{2}}\mathrm{d}x
Az összeg integrálása tagonként
\int \sqrt{x}\mathrm{d}x+\int x^{\frac{4}{3}}\mathrm{d}x+3\int x^{\frac{3}{2}}\mathrm{d}x
Az állandó kiemelése minden egyes tagban
\frac{2x^{\frac{3}{2}}}{3}+\int x^{\frac{4}{3}}\mathrm{d}x+3\int x^{\frac{3}{2}}\mathrm{d}x
Átírjuk az értéket (\sqrt{x}) x^{\frac{1}{2}} alakban. Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{\frac{1}{2}}\mathrm{d}x \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Egyszerűsítünk.
\frac{2x^{\frac{3}{2}}}{3}+\frac{3x^{\frac{7}{3}}}{7}+3\int x^{\frac{3}{2}}\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{\frac{4}{3}}\mathrm{d}x \frac{3x^{\frac{7}{3}}}{7}.
\frac{2x^{\frac{3}{2}}}{3}+\frac{3x^{\frac{7}{3}}}{7}+\frac{6x^{\frac{5}{2}}}{5}
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{\frac{3}{2}}\mathrm{d}x \frac{2x^{\frac{5}{2}}}{5}. Összeszorozzuk a következőket: 3 és \frac{2x^{\frac{5}{2}}}{5}.
\frac{2x^{\frac{3}{2}}}{3}+\frac{3x^{\frac{7}{3}}}{7}+\frac{6x^{\frac{5}{2}}}{5}+С
Ha F\left(x\right) egy f\left(x\right), akkor a f\left(x\right) összes antiderivatives készlete F\left(x\right)+C. Ezért adja hozzá az integráció állandót C\in \mathrm{R} az eredménybe.