Kiértékelés
\frac{28190778623577249}{98000000000000000}\approx 0,287661006
Szorzattá alakítás
\frac{3 \cdot 87553 \cdot 107328432011}{2 ^ {16} \cdot 5 ^ {15} \cdot 7 ^ {2}} = 0,28766100636303316
Megosztás
Átmásolva a vágólapra
\frac{30 {(\frac{x}{y})} ^ {2} 0,9396926207859083}{98 {(\frac{x}{y})} ^ {2}}
Evaluate trigonometric functions in the problem
\frac{30\times \frac{x^{2}}{y^{2}}\times 0,9396926207859083}{98\times \left(\frac{x}{y}\right)^{2}}
A hányados (\frac{x}{y}) hatványozásához emelje hatványra mind a számlálót, mind pedig a nevezőt, majd végezze el az osztást.
\frac{28,190778623577249\times \frac{x^{2}}{y^{2}}}{98\times \left(\frac{x}{y}\right)^{2}}
Összeszorozzuk a következőket: 30 és 0,9396926207859083. Az eredmény 28,190778623577249.
\frac{28,190778623577249\times \frac{x^{2}}{y^{2}}}{98\times \frac{x^{2}}{y^{2}}}
A hányados (\frac{x}{y}) hatványozásához emelje hatványra mind a számlálót, mind pedig a nevezőt, majd végezze el az osztást.
\frac{28,190778623577249\times \frac{x^{2}}{y^{2}}}{\frac{98x^{2}}{y^{2}}}
Kifejezzük a hányadost (98\times \frac{x^{2}}{y^{2}}) egyetlen törtként.
\frac{28,190778623577249\times \frac{x^{2}}{y^{2}}y^{2}}{98x^{2}}
28,190778623577249\times \frac{x^{2}}{y^{2}} elosztása a következővel: \frac{98x^{2}}{y^{2}}. Ezt úgy végezzük, hogy a(z) 28,190778623577249\times \frac{x^{2}}{y^{2}} értéket megszorozzuk a(z) \frac{98x^{2}}{y^{2}} reciprokával.
\frac{28,190778623577249x^{2}}{98x^{2}}
Kiejtjük ezt a két értéket: y^{2} és y^{2}.
\frac{28,190778623577249}{98}
Kiejtjük ezt az értéket a számlálóban és a nevezőben is: x^{2}.
\frac{28190778623577249}{98000000000000000}
\frac{28,190778623577249}{98} szétbontásához mind a számlálót, mind a nevezőt megszorozzuk ennyivel: 1000000000000000.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}