Kiértékelés
\frac{6}{7}\approx 0,857142857
Szorzattá alakítás
\frac{2 \cdot 3}{7} = 0,8571428571428571
Megosztás
Átmásolva a vágólapra
\frac{-\frac{47}{14}+\frac{7}{4}+\frac{11}{4}}{\frac{4}{3}}
A(z) \frac{-47}{14} tört felírható -\frac{47}{14} alakban is, ha töröljük a mínuszjelet.
\frac{-\frac{94}{28}+\frac{49}{28}+\frac{11}{4}}{\frac{4}{3}}
14 és 4 legkisebb közös többszöröse 28. Átalakítjuk a számokat (-\frac{47}{14} és \frac{7}{4}) törtekké, amelyek nevezője 28.
\frac{\frac{-94+49}{28}+\frac{11}{4}}{\frac{4}{3}}
Mivel -\frac{94}{28} és \frac{49}{28} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{-\frac{45}{28}+\frac{11}{4}}{\frac{4}{3}}
Összeadjuk a következőket: -94 és 49. Az eredmény -45.
\frac{-\frac{45}{28}+\frac{77}{28}}{\frac{4}{3}}
28 és 4 legkisebb közös többszöröse 28. Átalakítjuk a számokat (-\frac{45}{28} és \frac{11}{4}) törtekké, amelyek nevezője 28.
\frac{\frac{-45+77}{28}}{\frac{4}{3}}
Mivel -\frac{45}{28} és \frac{77}{28} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{\frac{32}{28}}{\frac{4}{3}}
Összeadjuk a következőket: -45 és 77. Az eredmény 32.
\frac{\frac{8}{7}}{\frac{4}{3}}
A törtet (\frac{32}{28}) leegyszerűsítjük 4 kivonásával és kiejtésével.
\frac{8}{7}\times \frac{3}{4}
\frac{8}{7} elosztása a következővel: \frac{4}{3}. Ezt úgy végezzük, hogy a(z) \frac{8}{7} értéket megszorozzuk a(z) \frac{4}{3} reciprokával.
\frac{8\times 3}{7\times 4}
Összeszorozzuk a következőket: \frac{8}{7} és \frac{3}{4}. Ezt úgy végezzük, hogy a számlálót megszorozzuk a számlálóval, a nevezőt pedig a nevezővel.
\frac{24}{28}
Elvégezzük a törtben (\frac{8\times 3}{7\times 4}) szereplő szorzásokat.
\frac{6}{7}
A törtet (\frac{24}{28}) leegyszerűsítjük 4 kivonásával és kiejtésével.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}